阿尔茨海默病的 DNA 甲基化。

Q3 Neuroscience
Luke Weymouth, Adam R Smith, Katie Lunnon
{"title":"阿尔茨海默病的 DNA 甲基化。","authors":"Luke Weymouth, Adam R Smith, Katie Lunnon","doi":"10.1007/7854_2024_530","DOIUrl":null,"url":null,"abstract":"<p><p>To date, DNA methylation is the best characterized epigenetic modification in Alzheimer's disease. Involving the addition of a methyl group to the fifth carbon of the cytosine pyrimidine base, DNA methylation is generally thought to be associated with the silencing of gene expression. It has been hypothesized that epigenetics may mediate the interaction between genes and the environment in the manifestation of Alzheimer's disease, and therefore studies investigating DNA methylation could elucidate novel disease mechanisms. This chapter comprehensively reviews epigenomic studies, undertaken in human brain tissue and purified brain cell types, focusing on global methylation levels, candidate genes, epigenome wide approaches, and recent meta-analyses. We discuss key differentially methylated genes and pathways that have been highlighted to date, with a discussion on how new technologies and the integration of multiomic data may further advance the field.</p>","PeriodicalId":11257,"journal":{"name":"Current topics in behavioral neurosciences","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DNA Methylation in Alzheimer's Disease.\",\"authors\":\"Luke Weymouth, Adam R Smith, Katie Lunnon\",\"doi\":\"10.1007/7854_2024_530\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>To date, DNA methylation is the best characterized epigenetic modification in Alzheimer's disease. Involving the addition of a methyl group to the fifth carbon of the cytosine pyrimidine base, DNA methylation is generally thought to be associated with the silencing of gene expression. It has been hypothesized that epigenetics may mediate the interaction between genes and the environment in the manifestation of Alzheimer's disease, and therefore studies investigating DNA methylation could elucidate novel disease mechanisms. This chapter comprehensively reviews epigenomic studies, undertaken in human brain tissue and purified brain cell types, focusing on global methylation levels, candidate genes, epigenome wide approaches, and recent meta-analyses. We discuss key differentially methylated genes and pathways that have been highlighted to date, with a discussion on how new technologies and the integration of multiomic data may further advance the field.</p>\",\"PeriodicalId\":11257,\"journal\":{\"name\":\"Current topics in behavioral neurosciences\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current topics in behavioral neurosciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/7854_2024_530\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Neuroscience\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current topics in behavioral neurosciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/7854_2024_530","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Neuroscience","Score":null,"Total":0}
引用次数: 0

摘要

迄今为止,DNA 甲基化是阿尔茨海默病表观遗传修饰中特征最明显的一种。DNA 甲基化涉及在胞嘧啶碱基的第五个碳上添加一个甲基,一般认为这与基因表达沉默有关。据推测,表观遗传学可能在阿尔茨海默病的表现过程中介导基因与环境之间的相互作用,因此对 DNA 甲基化的研究可以阐明新的疾病机制。本章全面回顾了在人类脑组织和纯化脑细胞类型中开展的表观基因组研究,重点关注全球甲基化水平、候选基因、表观基因组范围方法和近期的荟萃分析。我们讨论了迄今为止重点关注的关键差异甲基化基因和通路,并讨论了新技术和多组数据整合如何进一步推动该领域的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DNA Methylation in Alzheimer's Disease.

To date, DNA methylation is the best characterized epigenetic modification in Alzheimer's disease. Involving the addition of a methyl group to the fifth carbon of the cytosine pyrimidine base, DNA methylation is generally thought to be associated with the silencing of gene expression. It has been hypothesized that epigenetics may mediate the interaction between genes and the environment in the manifestation of Alzheimer's disease, and therefore studies investigating DNA methylation could elucidate novel disease mechanisms. This chapter comprehensively reviews epigenomic studies, undertaken in human brain tissue and purified brain cell types, focusing on global methylation levels, candidate genes, epigenome wide approaches, and recent meta-analyses. We discuss key differentially methylated genes and pathways that have been highlighted to date, with a discussion on how new technologies and the integration of multiomic data may further advance the field.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current topics in behavioral neurosciences
Current topics in behavioral neurosciences Neuroscience-Behavioral Neuroscience
CiteScore
4.80
自引率
0.00%
发文量
103
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信