{"title":"扩大真菌生物在环境生物技术中的应用。","authors":"","doi":"10.1016/j.copbio.2024.103217","DOIUrl":null,"url":null,"abstract":"<div><div>Fungal organisms hold vital roles in ecosystem processes. Despite their intricate entanglement with most life on earth and their powerful metabolic capacities, they remain under-represented in environmental biotechnology. The interest in applying fungal biotechnologies to different environments is growing, as light is shed on their versatile potential. A diversity of fungi can be harnessed to promote crop yield, remediate pollutants from terrestrial and aquatic environments, and mitigate climate change impacts. Current technological advancements, such as the increase in high-accuracy ‘omics pipelines, provide improvement. However, it is emphasized that there are many knowledge gaps regarding applying fungal biotechnology at scale where other organisms are inherently present. Hence, there is a dire need to increase funding that enables in-depth studies on fungal processes, such as degradation capacities, metabolite production, and cross-kingdom interactions, that promote climate-smart biotechnologies.</div></div>","PeriodicalId":10833,"journal":{"name":"Current opinion in biotechnology","volume":null,"pages":null},"PeriodicalIF":7.1000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The expansion of fungal organisms in environmental biotechnology\",\"authors\":\"\",\"doi\":\"10.1016/j.copbio.2024.103217\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Fungal organisms hold vital roles in ecosystem processes. Despite their intricate entanglement with most life on earth and their powerful metabolic capacities, they remain under-represented in environmental biotechnology. The interest in applying fungal biotechnologies to different environments is growing, as light is shed on their versatile potential. A diversity of fungi can be harnessed to promote crop yield, remediate pollutants from terrestrial and aquatic environments, and mitigate climate change impacts. Current technological advancements, such as the increase in high-accuracy ‘omics pipelines, provide improvement. However, it is emphasized that there are many knowledge gaps regarding applying fungal biotechnology at scale where other organisms are inherently present. Hence, there is a dire need to increase funding that enables in-depth studies on fungal processes, such as degradation capacities, metabolite production, and cross-kingdom interactions, that promote climate-smart biotechnologies.</div></div>\",\"PeriodicalId\":10833,\"journal\":{\"name\":\"Current opinion in biotechnology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2024-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current opinion in biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0958166924001538\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current opinion in biotechnology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0958166924001538","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
The expansion of fungal organisms in environmental biotechnology
Fungal organisms hold vital roles in ecosystem processes. Despite their intricate entanglement with most life on earth and their powerful metabolic capacities, they remain under-represented in environmental biotechnology. The interest in applying fungal biotechnologies to different environments is growing, as light is shed on their versatile potential. A diversity of fungi can be harnessed to promote crop yield, remediate pollutants from terrestrial and aquatic environments, and mitigate climate change impacts. Current technological advancements, such as the increase in high-accuracy ‘omics pipelines, provide improvement. However, it is emphasized that there are many knowledge gaps regarding applying fungal biotechnology at scale where other organisms are inherently present. Hence, there is a dire need to increase funding that enables in-depth studies on fungal processes, such as degradation capacities, metabolite production, and cross-kingdom interactions, that promote climate-smart biotechnologies.
期刊介绍:
Current Opinion in Biotechnology (COBIOT) is renowned for publishing authoritative, comprehensive, and systematic reviews. By offering clear and readable syntheses of current advances in biotechnology, COBIOT assists specialists in staying updated on the latest developments in the field. Expert authors annotate the most noteworthy papers from the vast array of information available today, providing readers with valuable insights and saving them time.
As part of the Current Opinion and Research (CO+RE) suite of journals, COBIOT is accompanied by the open-access primary research journal, Current Research in Biotechnology (CRBIOT). Leveraging the editorial excellence, high impact, and global reach of the Current Opinion legacy, CO+RE journals ensure they are widely read resources integral to scientists' workflows.
COBIOT is organized into themed sections, each reviewed once a year. These themes cover various areas of biotechnology, including analytical biotechnology, plant biotechnology, food biotechnology, energy biotechnology, environmental biotechnology, systems biology, nanobiotechnology, tissue, cell, and pathway engineering, chemical biotechnology, and pharmaceutical biotechnology.