阿魏酸可抑制阿维菌素诱导的氧化应激、炎症和细胞凋亡,从而减轻心脏损伤。

IF 3.9 3区 环境科学与生态学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Qiao Wang , Shasha Zhang , Jiahao Ding , Zhiqiang Zhang , Xinxuan Li , Yuxin Chen , Yangye Zhu , Danping Zeng , Jingquan Dong , Yi Liu
{"title":"阿魏酸可抑制阿维菌素诱导的氧化应激、炎症和细胞凋亡,从而减轻心脏损伤。","authors":"Qiao Wang ,&nbsp;Shasha Zhang ,&nbsp;Jiahao Ding ,&nbsp;Zhiqiang Zhang ,&nbsp;Xinxuan Li ,&nbsp;Yuxin Chen ,&nbsp;Yangye Zhu ,&nbsp;Danping Zeng ,&nbsp;Jingquan Dong ,&nbsp;Yi Liu","doi":"10.1016/j.cbpc.2024.110058","DOIUrl":null,"url":null,"abstract":"<div><div>Avermectin (AVM) is a broad-spectrum antibiotic from the macrolide class, extensively employed in fisheries and aquaculture. Nevertheless, its indiscriminate utilisation has resulted in a substantial accumulation of remnants in the aquatic ecosystem, potentially inflicting significant harm to the cardiovascular system of aquatic species. Ferulic acid (FA) is a naturally occurring compound in wheat grain husks. It possesses potent anti-inflammatory and antioxidant properties, which can help reduce cardiovascular damage. Additionally, its affordability makes it an excellent option for aquaculture usage as a feed additive. This article explored the potential of FA as a feed additive to protect against AVM-induced heart damage in carp. We subjected carp to AVM for 30 days and provided them with a diet of 400 mg/kg of FA. FA substantially reduced the pathogenic damage to heart tissue caused by AVM, as shown through hematoxylin-eosin staining. The biochemical analysis revealed that FA markedly enhanced the activity of antioxidant enzymes catalase (CAT), glutathione (GSH), and total antioxidant capacity (T-AOC) while reducing the malondialdehyde (MDA) content. Furthermore, qPCR analysis demonstrated a substantial increase in the mRNA levels of transforming growth factor-β1 (<em>tgf-β1</em>) and interleukin-10 (<em>il-10</em>) simultaneously, significantly reducing the expression levels of interleukin-10 (<em>il-6</em>), interleukin-1β (<em>il-1β</em>), tumor necrosis factor-α (<em>tnf-α</em>) and inductible nitric oxide synthase (<em>inos</em>). Through the mitochondrial apoptotic route, FA reduced AVM-induced cell death in carp heart cells by upregulating <em>bcl-2</em> while downregulating the mRNA expression levels of <em>bax</em>, <em>fas</em>, <em>caspase8</em> and <em>caspase9</em>. In summary, FA alleviated cardiac injury by inhibiting AVM-induced oxidative stress, inflammatory response, and apoptosis in carp heart tissue.</div></div>","PeriodicalId":10602,"journal":{"name":"Comparative Biochemistry and Physiology C-toxicology & Pharmacology","volume":"287 ","pages":"Article 110058"},"PeriodicalIF":3.9000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ferulic acid alleviates cardiac injury by inhibiting avermectin-induced oxidative stress, inflammation and apoptosis\",\"authors\":\"Qiao Wang ,&nbsp;Shasha Zhang ,&nbsp;Jiahao Ding ,&nbsp;Zhiqiang Zhang ,&nbsp;Xinxuan Li ,&nbsp;Yuxin Chen ,&nbsp;Yangye Zhu ,&nbsp;Danping Zeng ,&nbsp;Jingquan Dong ,&nbsp;Yi Liu\",\"doi\":\"10.1016/j.cbpc.2024.110058\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Avermectin (AVM) is a broad-spectrum antibiotic from the macrolide class, extensively employed in fisheries and aquaculture. Nevertheless, its indiscriminate utilisation has resulted in a substantial accumulation of remnants in the aquatic ecosystem, potentially inflicting significant harm to the cardiovascular system of aquatic species. Ferulic acid (FA) is a naturally occurring compound in wheat grain husks. It possesses potent anti-inflammatory and antioxidant properties, which can help reduce cardiovascular damage. Additionally, its affordability makes it an excellent option for aquaculture usage as a feed additive. This article explored the potential of FA as a feed additive to protect against AVM-induced heart damage in carp. We subjected carp to AVM for 30 days and provided them with a diet of 400 mg/kg of FA. FA substantially reduced the pathogenic damage to heart tissue caused by AVM, as shown through hematoxylin-eosin staining. The biochemical analysis revealed that FA markedly enhanced the activity of antioxidant enzymes catalase (CAT), glutathione (GSH), and total antioxidant capacity (T-AOC) while reducing the malondialdehyde (MDA) content. Furthermore, qPCR analysis demonstrated a substantial increase in the mRNA levels of transforming growth factor-β1 (<em>tgf-β1</em>) and interleukin-10 (<em>il-10</em>) simultaneously, significantly reducing the expression levels of interleukin-10 (<em>il-6</em>), interleukin-1β (<em>il-1β</em>), tumor necrosis factor-α (<em>tnf-α</em>) and inductible nitric oxide synthase (<em>inos</em>). Through the mitochondrial apoptotic route, FA reduced AVM-induced cell death in carp heart cells by upregulating <em>bcl-2</em> while downregulating the mRNA expression levels of <em>bax</em>, <em>fas</em>, <em>caspase8</em> and <em>caspase9</em>. In summary, FA alleviated cardiac injury by inhibiting AVM-induced oxidative stress, inflammatory response, and apoptosis in carp heart tissue.</div></div>\",\"PeriodicalId\":10602,\"journal\":{\"name\":\"Comparative Biochemistry and Physiology C-toxicology & Pharmacology\",\"volume\":\"287 \",\"pages\":\"Article 110058\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comparative Biochemistry and Physiology C-toxicology & Pharmacology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1532045624002266\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comparative Biochemistry and Physiology C-toxicology & Pharmacology","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1532045624002266","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

阿维菌素(AVM)是一种大环内酯类广谱抗生素,被广泛用于渔业和水产养殖业。然而,对它的滥用导致其残留物在水生生态系统中大量积累,可能对水生物种的心血管系统造成严重危害。阿魏酸(FA)是一种天然存在于小麦谷壳中的化合物。它具有强大的抗炎和抗氧化特性,有助于减少对心血管的损害。此外,FA 价格低廉,是水产养殖中用作饲料添加剂的极佳选择。本文探讨了 FA 作为饲料添加剂保护鲤鱼免受 AVM 引起的心脏损伤的潜力。我们对鲤鱼进行了为期 30 天的反车辆地雷实验,并为其提供了每公斤含 400 毫克 FA 的饲料。苏木精-伊红染色显示,FA 能显著降低 AVM 对心脏组织造成的致病性损伤。生化分析表明,FA 显著提高了抗氧化酶过氧化氢酶(CAT)、谷胱甘肽(GSH)和总抗氧化能力(T-AOC)的活性,同时降低了丙二醛(MDA)的含量。此外,qPCR 分析表明,转化生长因子-β1(tgf-β1)和白细胞介素-10(il-10)的 mRNA 水平同时大幅提高,白细胞介素-10(il-6)、白细胞介素-1β(il-1β)、肿瘤坏死因子-α(tnf-α)和可诱导一氧化氮合酶(inos)的表达水平显著降低。通过线粒体凋亡途径,FA 上调了 bcl-2 的表达,同时下调了 bax、fas、caspase8 和 caspase9 的 mRNA 表达水平,从而减少了 AVM 诱导的鲤鱼心脏细胞死亡。总之,FA 通过抑制 AVM 诱导的鲤鱼心脏组织氧化应激、炎症反应和细胞凋亡,减轻了心脏损伤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Ferulic acid alleviates cardiac injury by inhibiting avermectin-induced oxidative stress, inflammation and apoptosis

Ferulic acid alleviates cardiac injury by inhibiting avermectin-induced oxidative stress, inflammation and apoptosis
Avermectin (AVM) is a broad-spectrum antibiotic from the macrolide class, extensively employed in fisheries and aquaculture. Nevertheless, its indiscriminate utilisation has resulted in a substantial accumulation of remnants in the aquatic ecosystem, potentially inflicting significant harm to the cardiovascular system of aquatic species. Ferulic acid (FA) is a naturally occurring compound in wheat grain husks. It possesses potent anti-inflammatory and antioxidant properties, which can help reduce cardiovascular damage. Additionally, its affordability makes it an excellent option for aquaculture usage as a feed additive. This article explored the potential of FA as a feed additive to protect against AVM-induced heart damage in carp. We subjected carp to AVM for 30 days and provided them with a diet of 400 mg/kg of FA. FA substantially reduced the pathogenic damage to heart tissue caused by AVM, as shown through hematoxylin-eosin staining. The biochemical analysis revealed that FA markedly enhanced the activity of antioxidant enzymes catalase (CAT), glutathione (GSH), and total antioxidant capacity (T-AOC) while reducing the malondialdehyde (MDA) content. Furthermore, qPCR analysis demonstrated a substantial increase in the mRNA levels of transforming growth factor-β1 (tgf-β1) and interleukin-10 (il-10) simultaneously, significantly reducing the expression levels of interleukin-10 (il-6), interleukin-1β (il-1β), tumor necrosis factor-α (tnf-α) and inductible nitric oxide synthase (inos). Through the mitochondrial apoptotic route, FA reduced AVM-induced cell death in carp heart cells by upregulating bcl-2 while downregulating the mRNA expression levels of bax, fas, caspase8 and caspase9. In summary, FA alleviated cardiac injury by inhibiting AVM-induced oxidative stress, inflammatory response, and apoptosis in carp heart tissue.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.50
自引率
5.10%
发文量
206
审稿时长
30 days
期刊介绍: Part C: Toxicology and Pharmacology. This journal is concerned with chemical and drug action at different levels of organization, biotransformation of xenobiotics, mechanisms of toxicity, including reactive oxygen species and carcinogenesis, endocrine disruptors, natural products chemistry, and signal transduction with a molecular approach to these fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信