利用布拉格相干 X 射线衍射对操作中的钴酸锂纳米晶体进行成像。

IF 5.9 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
David Serban, Daniel G. Porter, Ahmed H. Mokhtar, Mansoor Nellikkal, Sivaperumal Uthayakumar, Min Zhang, Stephen P. Collins, Alessandro Bombardi, Peng Li, Christoph Rau, Marcus C. Newton
{"title":"利用布拉格相干 X 射线衍射对操作中的钴酸锂纳米晶体进行成像。","authors":"David Serban, Daniel G. Porter, Ahmed H. Mokhtar, Mansoor Nellikkal, Sivaperumal Uthayakumar, Min Zhang, Stephen P. Collins, Alessandro Bombardi, Peng Li, Christoph Rau, Marcus C. Newton","doi":"10.1038/s42004-024-01331-y","DOIUrl":null,"url":null,"abstract":"Although the LiCoO2 (LCO) cathode material has been widely used in commercial lithium ion batteries (LIB) and shows high stability, LIB’s improvements have several challenges that still need to be overcome. In this paper, we have studied the in-operando structural properties of LCO within battery cells using Bragg Coherent X-ray Diffraction Imaging to identify ways to optimise the LCO batteries’ cycling. We have successfully reconstructed the X-ray scattering phase variation (a fingerprint of atomic displacement) within a  ≈ (1.6 × 1.4 × 1.3) μm3 LCO nanocrystal across a charge/discharge cycle. Reconstructions indicate strained domains forming, expanding, and fragmenting near the surface of the nanocrystal during charging, with a determined maximum relative lattice displacements of 0.467 Å. While discharging, all domains replicate in reverse the effects observed from the charging states, but with a lower maximum relative lattice displacements of 0.226 Å. These findings show the inefficiency-increasing domain dynamics within LCO lattices during cycling. Although lithium cobalt(III) oxide (LCO) is a widely used and highly stable lithium-ion battery material, several challenges still need to be overcome. Here, the authors use in-operando Bragg Coherent X-ray Diffraction Imaging to visualize the structural properties of LCO in battery cells and identify inefficiency-increasing domain dynamics during cycling.","PeriodicalId":10529,"journal":{"name":"Communications Chemistry","volume":" ","pages":"1-9"},"PeriodicalIF":5.9000,"publicationDate":"2024-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42004-024-01331-y.pdf","citationCount":"0","resultStr":"{\"title\":\"Imaging in-operando LiCoO2 nanocrystallites with Bragg coherent X-ray diffraction\",\"authors\":\"David Serban, Daniel G. Porter, Ahmed H. Mokhtar, Mansoor Nellikkal, Sivaperumal Uthayakumar, Min Zhang, Stephen P. Collins, Alessandro Bombardi, Peng Li, Christoph Rau, Marcus C. Newton\",\"doi\":\"10.1038/s42004-024-01331-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Although the LiCoO2 (LCO) cathode material has been widely used in commercial lithium ion batteries (LIB) and shows high stability, LIB’s improvements have several challenges that still need to be overcome. In this paper, we have studied the in-operando structural properties of LCO within battery cells using Bragg Coherent X-ray Diffraction Imaging to identify ways to optimise the LCO batteries’ cycling. We have successfully reconstructed the X-ray scattering phase variation (a fingerprint of atomic displacement) within a  ≈ (1.6 × 1.4 × 1.3) μm3 LCO nanocrystal across a charge/discharge cycle. Reconstructions indicate strained domains forming, expanding, and fragmenting near the surface of the nanocrystal during charging, with a determined maximum relative lattice displacements of 0.467 Å. While discharging, all domains replicate in reverse the effects observed from the charging states, but with a lower maximum relative lattice displacements of 0.226 Å. These findings show the inefficiency-increasing domain dynamics within LCO lattices during cycling. Although lithium cobalt(III) oxide (LCO) is a widely used and highly stable lithium-ion battery material, several challenges still need to be overcome. Here, the authors use in-operando Bragg Coherent X-ray Diffraction Imaging to visualize the structural properties of LCO in battery cells and identify inefficiency-increasing domain dynamics during cycling.\",\"PeriodicalId\":10529,\"journal\":{\"name\":\"Communications Chemistry\",\"volume\":\" \",\"pages\":\"1-9\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2024-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s42004-024-01331-y.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.nature.com/articles/s42004-024-01331-y\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.nature.com/articles/s42004-024-01331-y","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

尽管钴酸锂(LCO)正极材料已被广泛应用于商业锂离子电池(LIB)中,并显示出较高的稳定性,但锂离子电池的改进仍面临一些挑战,需要加以克服。在本文中,我们利用布拉格相干 X 射线衍射成像技术研究了 LCO 在电池内的运行结构特性,以确定优化 LCO 电池循环的方法。我们成功地重建了一个 ≈ (1.6 × 1.4 × 1.3) μm3 LCO 纳米晶体在充放电周期内的 X 射线散射相位变化(原子位移的指纹)。重构结果表明,在充电过程中,纳米晶体表面附近的应变畴形成、扩展和破碎,确定的最大相对晶格位移为 0.467 Å;在放电过程中,所有畴都反向复制了从充电状态观察到的效果,但最大相对晶格位移较低,为 0.226 Å。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Imaging in-operando LiCoO2 nanocrystallites with Bragg coherent X-ray diffraction

Imaging in-operando LiCoO2 nanocrystallites with Bragg coherent X-ray diffraction
Although the LiCoO2 (LCO) cathode material has been widely used in commercial lithium ion batteries (LIB) and shows high stability, LIB’s improvements have several challenges that still need to be overcome. In this paper, we have studied the in-operando structural properties of LCO within battery cells using Bragg Coherent X-ray Diffraction Imaging to identify ways to optimise the LCO batteries’ cycling. We have successfully reconstructed the X-ray scattering phase variation (a fingerprint of atomic displacement) within a  ≈ (1.6 × 1.4 × 1.3) μm3 LCO nanocrystal across a charge/discharge cycle. Reconstructions indicate strained domains forming, expanding, and fragmenting near the surface of the nanocrystal during charging, with a determined maximum relative lattice displacements of 0.467 Å. While discharging, all domains replicate in reverse the effects observed from the charging states, but with a lower maximum relative lattice displacements of 0.226 Å. These findings show the inefficiency-increasing domain dynamics within LCO lattices during cycling. Although lithium cobalt(III) oxide (LCO) is a widely used and highly stable lithium-ion battery material, several challenges still need to be overcome. Here, the authors use in-operando Bragg Coherent X-ray Diffraction Imaging to visualize the structural properties of LCO in battery cells and identify inefficiency-increasing domain dynamics during cycling.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications Chemistry
Communications Chemistry Chemistry-General Chemistry
CiteScore
7.70
自引率
1.70%
发文量
146
审稿时长
13 weeks
期刊介绍: Communications Chemistry is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the chemical sciences. Research papers published by the journal represent significant advances bringing new chemical insight to a specialized area of research. We also aim to provide a community forum for issues of importance to all chemists, regardless of sub-discipline.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信