设计刺激响应型过渡金属二钴化物。

IF 5.9 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Ramon Torres-Cavanillas, Alicia Forment-Aliaga
{"title":"设计刺激响应型过渡金属二钴化物。","authors":"Ramon Torres-Cavanillas, Alicia Forment-Aliaga","doi":"10.1038/s42004-024-01322-z","DOIUrl":null,"url":null,"abstract":"Stimuli-responsive systems are an emerging class of materials in fields as diverse as electronics, optoelectronics, cancer detection, drug delivery, or sensing. Especially focusing on nanomaterials, 2D transition metal dichalcogenides have recently attracted the scientific community''s attention due to their remarkable intrinsic stimuli-responsive behaviour upon external stimuli such as pH, light, voltage, or certain pathogens. This significant response can be further enhanced by forming mixed-dimensional heterostructures and by molecular functionalization, capitalizing on chemistry to manipulate and boost their intrinsic stimuli-responsive properties. Furthermore, thanks to the endless possibilities of chemistry, a new class of smart materials based on the combination of stimuli-responsive molecular systems with transition metal dichalcogenides has recently been synthesized. In these materials, the physical properties of the 2D layers are reversibly modified by the switchable molecules, not only enhancing their stimuli-responsive behaviour but also providing memory to the hybrid. Therefore, this review explores the recent breakthroughs in the chemical design of smart transition metal dichalcogenides with built-in responsiveness. Transition metal dichalcogenides not only possess intrinsic stimuli-responsive behaviours upon exposure to external stimuli, but molecular functionalization of these materials and/or combination with other materials to form mixed-dimensional heterostructures enables the manipulation and enhancement of their stimuli-responsive properties. Here, the authors review recent breakthroughs in the chemical design of smart transition metal dichalcogenides with built-in responsiveness.","PeriodicalId":10529,"journal":{"name":"Communications Chemistry","volume":" ","pages":"1-14"},"PeriodicalIF":5.9000,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42004-024-01322-z.pdf","citationCount":"0","resultStr":"{\"title\":\"Design of stimuli-responsive transition metal dichalcogenides\",\"authors\":\"Ramon Torres-Cavanillas, Alicia Forment-Aliaga\",\"doi\":\"10.1038/s42004-024-01322-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Stimuli-responsive systems are an emerging class of materials in fields as diverse as electronics, optoelectronics, cancer detection, drug delivery, or sensing. Especially focusing on nanomaterials, 2D transition metal dichalcogenides have recently attracted the scientific community''s attention due to their remarkable intrinsic stimuli-responsive behaviour upon external stimuli such as pH, light, voltage, or certain pathogens. This significant response can be further enhanced by forming mixed-dimensional heterostructures and by molecular functionalization, capitalizing on chemistry to manipulate and boost their intrinsic stimuli-responsive properties. Furthermore, thanks to the endless possibilities of chemistry, a new class of smart materials based on the combination of stimuli-responsive molecular systems with transition metal dichalcogenides has recently been synthesized. In these materials, the physical properties of the 2D layers are reversibly modified by the switchable molecules, not only enhancing their stimuli-responsive behaviour but also providing memory to the hybrid. Therefore, this review explores the recent breakthroughs in the chemical design of smart transition metal dichalcogenides with built-in responsiveness. Transition metal dichalcogenides not only possess intrinsic stimuli-responsive behaviours upon exposure to external stimuli, but molecular functionalization of these materials and/or combination with other materials to form mixed-dimensional heterostructures enables the manipulation and enhancement of their stimuli-responsive properties. Here, the authors review recent breakthroughs in the chemical design of smart transition metal dichalcogenides with built-in responsiveness.\",\"PeriodicalId\":10529,\"journal\":{\"name\":\"Communications Chemistry\",\"volume\":\" \",\"pages\":\"1-14\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2024-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s42004-024-01322-z.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.nature.com/articles/s42004-024-01322-z\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.nature.com/articles/s42004-024-01322-z","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

刺激响应系统是电子学、光电子学、癌症检测、药物输送或传感等领域的一类新兴材料。二维过渡金属二钴化物尤其以纳米材料为重点,由于其在 pH 值、光、电压或某些病原体等外部刺激下具有显著的内在刺激响应行为,最近引起了科学界的关注。通过形成混维异质结构和分子功能化,可以进一步增强这种显著的反应,从而利用化学来操纵和提高其内在的刺激响应特性。此外,得益于化学的无限可能性,最近合成出了一类基于刺激响应分子体系与过渡金属二钴化物结合的新型智能材料。在这些材料中,二维层的物理性质被可切换分子可逆地改变,不仅增强了它们的刺激响应行为,还为混合材料提供了记忆功能。因此,本综述探讨了具有内置响应性的智能过渡金属二掺杂化合物化学设计方面的最新突破。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Design of stimuli-responsive transition metal dichalcogenides

Design of stimuli-responsive transition metal dichalcogenides
Stimuli-responsive systems are an emerging class of materials in fields as diverse as electronics, optoelectronics, cancer detection, drug delivery, or sensing. Especially focusing on nanomaterials, 2D transition metal dichalcogenides have recently attracted the scientific community''s attention due to their remarkable intrinsic stimuli-responsive behaviour upon external stimuli such as pH, light, voltage, or certain pathogens. This significant response can be further enhanced by forming mixed-dimensional heterostructures and by molecular functionalization, capitalizing on chemistry to manipulate and boost their intrinsic stimuli-responsive properties. Furthermore, thanks to the endless possibilities of chemistry, a new class of smart materials based on the combination of stimuli-responsive molecular systems with transition metal dichalcogenides has recently been synthesized. In these materials, the physical properties of the 2D layers are reversibly modified by the switchable molecules, not only enhancing their stimuli-responsive behaviour but also providing memory to the hybrid. Therefore, this review explores the recent breakthroughs in the chemical design of smart transition metal dichalcogenides with built-in responsiveness. Transition metal dichalcogenides not only possess intrinsic stimuli-responsive behaviours upon exposure to external stimuli, but molecular functionalization of these materials and/or combination with other materials to form mixed-dimensional heterostructures enables the manipulation and enhancement of their stimuli-responsive properties. Here, the authors review recent breakthroughs in the chemical design of smart transition metal dichalcogenides with built-in responsiveness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications Chemistry
Communications Chemistry Chemistry-General Chemistry
CiteScore
7.70
自引率
1.70%
发文量
146
审稿时长
13 weeks
期刊介绍: Communications Chemistry is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the chemical sciences. Research papers published by the journal represent significant advances bringing new chemical insight to a specialized area of research. We also aim to provide a community forum for issues of importance to all chemists, regardless of sub-discipline.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信