Mansoor Akhtar, Shifa Ullah Khan, Ghulam Mustafa, Muhammad Ahmad, Tansir Ahamad
{"title":"一种具有增强光催化性能的新型 BiOBr/CAU-17 复合材料,用于在可见光下降解染料和去除四环素类抗生素。","authors":"Mansoor Akhtar, Shifa Ullah Khan, Ghulam Mustafa, Muhammad Ahmad, Tansir Ahamad","doi":"10.1002/open.202400195","DOIUrl":null,"url":null,"abstract":"<p><p>In order to improve the low specific surface area and high recombinant light generation carriers of BiOBr, loading BiOBr onto suitable Metal Organic Frameworks (MOFs) is an effective strategy to unleash its efficient visible light response and intrinsic catalytic activity. In this study, using classic MOF CAU-17 as a precursor, using a straightforward co-precipitation technique, four BiOBr/CAU-17 composites with distinct MOF contents values BCAU-1, BCAU-2, BC, AU-3, and BCAU-4 were created, and their photo-catalytic characteristics were examined. The BCAU-2 composite exhibited much higher photo-catalytic degradation efficiency for Rhodamine B (RhB) and Tetracycline (TC) than the pristine materials, counter compositions, and early reported materials. XRD, SEM, TEM, XPS, and EDX results revealed the strong synergistic photo-catalytic effect of BiOBr and CAU-17. The photocatalytic degradation of TC was significantly enhanced by the BiOBr bimetal modification, with the 2 wt.% BiOBr/CAU-17 nanocomposite achieving an 87.2 % degradation of TC and 82 % Total Organic Carbon (TOC) removal within 60 min. The high photo-degradation efficiency of BCAU-2 composite should be attributed to the efficient transfer of photo-generated carriers at interfaces and the synergistic effect between BiOBr/CAU-17. Furthermore, the experiments on the capture of the active species proved that the main active free radicals involved in the degradation of RhB and TC are attributed to the photo-induced holes h<sup>+</sup> and ⋅ O<sub>2</sub> <sup>-</sup> under visible light. The catalyst's efficacy is corroborated by the outcomes of photoluminescence spectroscopy and photo current response. This study offers a new understanding for the design of green synthesis schemes for photo-catalytic dye degradation and removal of certain antibiotics from the aquatic environment.</p>","PeriodicalId":9831,"journal":{"name":"ChemistryOpen","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Novel BiOBr/CAU-17 Composite with Enhanced Photo-Catalytic Performance for Dye Degradation and Removal of Tetracycline Antibiotic Under Visible Light.\",\"authors\":\"Mansoor Akhtar, Shifa Ullah Khan, Ghulam Mustafa, Muhammad Ahmad, Tansir Ahamad\",\"doi\":\"10.1002/open.202400195\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In order to improve the low specific surface area and high recombinant light generation carriers of BiOBr, loading BiOBr onto suitable Metal Organic Frameworks (MOFs) is an effective strategy to unleash its efficient visible light response and intrinsic catalytic activity. In this study, using classic MOF CAU-17 as a precursor, using a straightforward co-precipitation technique, four BiOBr/CAU-17 composites with distinct MOF contents values BCAU-1, BCAU-2, BC, AU-3, and BCAU-4 were created, and their photo-catalytic characteristics were examined. The BCAU-2 composite exhibited much higher photo-catalytic degradation efficiency for Rhodamine B (RhB) and Tetracycline (TC) than the pristine materials, counter compositions, and early reported materials. XRD, SEM, TEM, XPS, and EDX results revealed the strong synergistic photo-catalytic effect of BiOBr and CAU-17. The photocatalytic degradation of TC was significantly enhanced by the BiOBr bimetal modification, with the 2 wt.% BiOBr/CAU-17 nanocomposite achieving an 87.2 % degradation of TC and 82 % Total Organic Carbon (TOC) removal within 60 min. The high photo-degradation efficiency of BCAU-2 composite should be attributed to the efficient transfer of photo-generated carriers at interfaces and the synergistic effect between BiOBr/CAU-17. Furthermore, the experiments on the capture of the active species proved that the main active free radicals involved in the degradation of RhB and TC are attributed to the photo-induced holes h<sup>+</sup> and ⋅ O<sub>2</sub> <sup>-</sup> under visible light. The catalyst's efficacy is corroborated by the outcomes of photoluminescence spectroscopy and photo current response. This study offers a new understanding for the design of green synthesis schemes for photo-catalytic dye degradation and removal of certain antibiotics from the aquatic environment.</p>\",\"PeriodicalId\":9831,\"journal\":{\"name\":\"ChemistryOpen\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemistryOpen\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/open.202400195\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemistryOpen","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/open.202400195","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
A Novel BiOBr/CAU-17 Composite with Enhanced Photo-Catalytic Performance for Dye Degradation and Removal of Tetracycline Antibiotic Under Visible Light.
In order to improve the low specific surface area and high recombinant light generation carriers of BiOBr, loading BiOBr onto suitable Metal Organic Frameworks (MOFs) is an effective strategy to unleash its efficient visible light response and intrinsic catalytic activity. In this study, using classic MOF CAU-17 as a precursor, using a straightforward co-precipitation technique, four BiOBr/CAU-17 composites with distinct MOF contents values BCAU-1, BCAU-2, BC, AU-3, and BCAU-4 were created, and their photo-catalytic characteristics were examined. The BCAU-2 composite exhibited much higher photo-catalytic degradation efficiency for Rhodamine B (RhB) and Tetracycline (TC) than the pristine materials, counter compositions, and early reported materials. XRD, SEM, TEM, XPS, and EDX results revealed the strong synergistic photo-catalytic effect of BiOBr and CAU-17. The photocatalytic degradation of TC was significantly enhanced by the BiOBr bimetal modification, with the 2 wt.% BiOBr/CAU-17 nanocomposite achieving an 87.2 % degradation of TC and 82 % Total Organic Carbon (TOC) removal within 60 min. The high photo-degradation efficiency of BCAU-2 composite should be attributed to the efficient transfer of photo-generated carriers at interfaces and the synergistic effect between BiOBr/CAU-17. Furthermore, the experiments on the capture of the active species proved that the main active free radicals involved in the degradation of RhB and TC are attributed to the photo-induced holes h+ and ⋅ O2- under visible light. The catalyst's efficacy is corroborated by the outcomes of photoluminescence spectroscopy and photo current response. This study offers a new understanding for the design of green synthesis schemes for photo-catalytic dye degradation and removal of certain antibiotics from the aquatic environment.
期刊介绍:
ChemistryOpen is a multidisciplinary, gold-road open-access, international forum for the publication of outstanding Reviews, Full Papers, and Communications from all areas of chemistry and related fields. It is co-owned by 16 continental European Chemical Societies, who have banded together in the alliance called ChemPubSoc Europe for the purpose of publishing high-quality journals in the field of chemistry and its border disciplines. As some of the governments of the countries represented in ChemPubSoc Europe have strongly recommended that the research conducted with their funding is freely accessible for all readers (Open Access), ChemPubSoc Europe was concerned that no journal for which the ethical standards were monitored by a chemical society was available for such papers. ChemistryOpen fills this gap.