Rebecca E Wagner, Leonie Arnetzl, Thiago Britto-Borges, Anke Heit-Mondrzyk, Ali Bakr, Etienne Sollier, Nikoletta A Gkatza, Jasper Panten, Sylvain Delaunay, Daniela Sohn, Peter Schmezer, Duncan T Odom, Karin Müller-Decker, Christoph Plass, Christoph Dieterich, Pavlo Lutsik, Susanne Bornelöv, Michaela Frye
{"title":"SRSF2 可保障 DNA 损伤和修复基因的高效转录。","authors":"Rebecca E Wagner, Leonie Arnetzl, Thiago Britto-Borges, Anke Heit-Mondrzyk, Ali Bakr, Etienne Sollier, Nikoletta A Gkatza, Jasper Panten, Sylvain Delaunay, Daniela Sohn, Peter Schmezer, Duncan T Odom, Karin Müller-Decker, Christoph Plass, Christoph Dieterich, Pavlo Lutsik, Susanne Bornelöv, Michaela Frye","doi":"10.1016/j.celrep.2024.114869","DOIUrl":null,"url":null,"abstract":"<p><p>The serine-/arginine-rich splicing factor 2 (SRSF2) plays pivotal roles in pre-mRNA processing and gene transcription. Recurrent mutations, particularly a proline-to-histidine substitution at position 95 (P95H), are common in neoplastic diseases. Here, we assess SRSF2's diverse functions in squamous cell carcinoma. We show that SRSF2 deletion or homozygous P95H mutation both cause extensive DNA damage leading to cell-cycle arrest. Mechanistically, SRSF2 regulates efficient bi-directional transcription of DNA replication and repair genes, independent from its function in splicing. Further, SRSF2 haploinsufficiency induces DNA damage without halting the cell cycle. Exposing mouse skin to tumor-promoting carcinogens enhances the clonal expansion of heterozygous Srsf2 P95H epidermal cells but unexpectedly inhibits tumor formation. To survive carcinogen treatment, Srsf2 P95H<sup>+/-</sup> cells undergo substantial transcriptional rewiring and restore bi-directional gene expression. Thus, our study underscores SRSF2's importance in regulating transcription to orchestrate the cell cycle and the DNA damage response.</p>","PeriodicalId":9798,"journal":{"name":"Cell reports","volume":"43 11","pages":"114869"},"PeriodicalIF":7.5000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SRSF2 safeguards efficient transcription of DNA damage and repair genes.\",\"authors\":\"Rebecca E Wagner, Leonie Arnetzl, Thiago Britto-Borges, Anke Heit-Mondrzyk, Ali Bakr, Etienne Sollier, Nikoletta A Gkatza, Jasper Panten, Sylvain Delaunay, Daniela Sohn, Peter Schmezer, Duncan T Odom, Karin Müller-Decker, Christoph Plass, Christoph Dieterich, Pavlo Lutsik, Susanne Bornelöv, Michaela Frye\",\"doi\":\"10.1016/j.celrep.2024.114869\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The serine-/arginine-rich splicing factor 2 (SRSF2) plays pivotal roles in pre-mRNA processing and gene transcription. Recurrent mutations, particularly a proline-to-histidine substitution at position 95 (P95H), are common in neoplastic diseases. Here, we assess SRSF2's diverse functions in squamous cell carcinoma. We show that SRSF2 deletion or homozygous P95H mutation both cause extensive DNA damage leading to cell-cycle arrest. Mechanistically, SRSF2 regulates efficient bi-directional transcription of DNA replication and repair genes, independent from its function in splicing. Further, SRSF2 haploinsufficiency induces DNA damage without halting the cell cycle. Exposing mouse skin to tumor-promoting carcinogens enhances the clonal expansion of heterozygous Srsf2 P95H epidermal cells but unexpectedly inhibits tumor formation. To survive carcinogen treatment, Srsf2 P95H<sup>+/-</sup> cells undergo substantial transcriptional rewiring and restore bi-directional gene expression. Thus, our study underscores SRSF2's importance in regulating transcription to orchestrate the cell cycle and the DNA damage response.</p>\",\"PeriodicalId\":9798,\"journal\":{\"name\":\"Cell reports\",\"volume\":\"43 11\",\"pages\":\"114869\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2024-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell reports\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.celrep.2024.114869\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.celrep.2024.114869","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
SRSF2 safeguards efficient transcription of DNA damage and repair genes.
The serine-/arginine-rich splicing factor 2 (SRSF2) plays pivotal roles in pre-mRNA processing and gene transcription. Recurrent mutations, particularly a proline-to-histidine substitution at position 95 (P95H), are common in neoplastic diseases. Here, we assess SRSF2's diverse functions in squamous cell carcinoma. We show that SRSF2 deletion or homozygous P95H mutation both cause extensive DNA damage leading to cell-cycle arrest. Mechanistically, SRSF2 regulates efficient bi-directional transcription of DNA replication and repair genes, independent from its function in splicing. Further, SRSF2 haploinsufficiency induces DNA damage without halting the cell cycle. Exposing mouse skin to tumor-promoting carcinogens enhances the clonal expansion of heterozygous Srsf2 P95H epidermal cells but unexpectedly inhibits tumor formation. To survive carcinogen treatment, Srsf2 P95H+/- cells undergo substantial transcriptional rewiring and restore bi-directional gene expression. Thus, our study underscores SRSF2's importance in regulating transcription to orchestrate the cell cycle and the DNA damage response.
期刊介绍:
Cell Reports publishes high-quality research across the life sciences and focuses on new biological insight as its primary criterion for publication. The journal offers three primary article types: Reports, which are shorter single-point articles, research articles, which are longer and provide deeper mechanistic insights, and resources, which highlight significant technical advances or major informational datasets that contribute to biological advances. Reviews covering recent literature in emerging and active fields are also accepted.
The Cell Reports Portfolio includes gold open-access journals that cover life, medical, and physical sciences, and its mission is to make cutting-edge research and methodologies available to a wide readership.
The journal's professional in-house editors work closely with authors, reviewers, and the scientific advisory board, which consists of current and future leaders in their respective fields. The advisory board guides the scope, content, and quality of the journal, but editorial decisions are independently made by the in-house scientific editors of Cell Reports.