{"title":"天冬酰胺 614 决定小鼠抗衰老蛋白 Klotho 的运输和功能","authors":"Zahra Fanaei-Kahrani, Christoph Kaether","doi":"10.3390/cells13201743","DOIUrl":null,"url":null,"abstract":"<p><p>Klotho is an anti-aging protein whose deletion significantly reduces lifespan in mice, while its over-expression increases lifespan. Klotho is a type-I transmembrane protein that is N-glycosylated at eight positions within its ectodomain. Our study demonstrates that N-glycosylation or mutation at position N614, but not at N161, N285, or N346 in mouse Klotho, is critically involved in the transport of Klotho out of the endoplasmic reticulum (ER). Consequently, while wild-type Klotho-EGFP as well as the N-glycosylation mutants N161Q, N285Q, and N346Q were present at the plasma membrane (PM), only small amounts of the N614Q Klotho-EGFP were present at the PM, with most of the protein accumulating in the ER. Protein interactome analysis of Klotho-EGFP N614Q revealed increased interactions with proteasome-related proteins and proteins involved in ER protein processing, like heat shock proteins and protein disulfide isomerases, indicative of impaired protein folding. Co-immunoprecipitation experiments confirmed the interaction of Klotho-EGFP N614Q with ER chaperons. Interestingly, despite the low amounts of Klotho-EGFP N614Q at the PM, it efficiently induced FGF receptor-mediated ERK activation in the presence of FGF23, highlighting its efficacy in triggering downstream signaling, even in limited quantities at the PM.</p>","PeriodicalId":9743,"journal":{"name":"Cells","volume":null,"pages":null},"PeriodicalIF":5.1000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11506777/pdf/","citationCount":"0","resultStr":"{\"title\":\"Asparagine614 Determines the Transport and Function of the Murine Anti-Aging Protein Klotho.\",\"authors\":\"Zahra Fanaei-Kahrani, Christoph Kaether\",\"doi\":\"10.3390/cells13201743\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Klotho is an anti-aging protein whose deletion significantly reduces lifespan in mice, while its over-expression increases lifespan. Klotho is a type-I transmembrane protein that is N-glycosylated at eight positions within its ectodomain. Our study demonstrates that N-glycosylation or mutation at position N614, but not at N161, N285, or N346 in mouse Klotho, is critically involved in the transport of Klotho out of the endoplasmic reticulum (ER). Consequently, while wild-type Klotho-EGFP as well as the N-glycosylation mutants N161Q, N285Q, and N346Q were present at the plasma membrane (PM), only small amounts of the N614Q Klotho-EGFP were present at the PM, with most of the protein accumulating in the ER. Protein interactome analysis of Klotho-EGFP N614Q revealed increased interactions with proteasome-related proteins and proteins involved in ER protein processing, like heat shock proteins and protein disulfide isomerases, indicative of impaired protein folding. Co-immunoprecipitation experiments confirmed the interaction of Klotho-EGFP N614Q with ER chaperons. Interestingly, despite the low amounts of Klotho-EGFP N614Q at the PM, it efficiently induced FGF receptor-mediated ERK activation in the presence of FGF23, highlighting its efficacy in triggering downstream signaling, even in limited quantities at the PM.</p>\",\"PeriodicalId\":9743,\"journal\":{\"name\":\"Cells\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2024-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11506777/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cells\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3390/cells13201743\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cells","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/cells13201743","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Asparagine614 Determines the Transport and Function of the Murine Anti-Aging Protein Klotho.
Klotho is an anti-aging protein whose deletion significantly reduces lifespan in mice, while its over-expression increases lifespan. Klotho is a type-I transmembrane protein that is N-glycosylated at eight positions within its ectodomain. Our study demonstrates that N-glycosylation or mutation at position N614, but not at N161, N285, or N346 in mouse Klotho, is critically involved in the transport of Klotho out of the endoplasmic reticulum (ER). Consequently, while wild-type Klotho-EGFP as well as the N-glycosylation mutants N161Q, N285Q, and N346Q were present at the plasma membrane (PM), only small amounts of the N614Q Klotho-EGFP were present at the PM, with most of the protein accumulating in the ER. Protein interactome analysis of Klotho-EGFP N614Q revealed increased interactions with proteasome-related proteins and proteins involved in ER protein processing, like heat shock proteins and protein disulfide isomerases, indicative of impaired protein folding. Co-immunoprecipitation experiments confirmed the interaction of Klotho-EGFP N614Q with ER chaperons. Interestingly, despite the low amounts of Klotho-EGFP N614Q at the PM, it efficiently induced FGF receptor-mediated ERK activation in the presence of FGF23, highlighting its efficacy in triggering downstream signaling, even in limited quantities at the PM.
CellsBiochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
9.90
自引率
5.00%
发文量
3472
审稿时长
16 days
期刊介绍:
Cells (ISSN 2073-4409) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to cell biology, molecular biology and biophysics. It publishes reviews, research articles, communications and technical notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided.