基于计算机断层扫描的放射组学特征用于无创预测卵巢癌中 CXCL10 的表达和预后

IF 1.5 Q4 ONCOLOGY
Cancer reports Pub Date : 2024-10-23 DOI:10.1002/cnr2.70030
Xiaohua Wang, Yuanyuan Xing, Xuan Zhou, Chunhui Wang, Shuyu Han, Sufen Zhao
{"title":"基于计算机断层扫描的放射组学特征用于无创预测卵巢癌中 CXCL10 的表达和预后","authors":"Xiaohua Wang,&nbsp;Yuanyuan Xing,&nbsp;Xuan Zhou,&nbsp;Chunhui Wang,&nbsp;Shuyu Han,&nbsp;Sufen Zhao","doi":"10.1002/cnr2.70030","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Background</h3>\n \n <p>Ovarian cancer (OC) is an aggressive gynecological tumor usually diagnosed with malignant ascites and even observed widespread metastasis or distant spread.</p>\n </section>\n \n <section>\n \n <h3> Aims</h3>\n \n <p>We aimed to develop and identify radiomics models according to computed tomography (CT) for preoperative prediction of <i>CXCL10</i> expression and prognosis in patients with OC.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>Genomic data with CT images and corresponding clinicopathological parameters were extracted from The Cancer Imaging Archive (TCIA) and The Cancer Genome Atlas (TCGA). To analyze the prognosis, we carried out the univariate Cox regression analysis (UCRA), multivariate Cox regression analysis (MCRA), and Kaplan–Meier (KM) analysis. For the data reduction, logistic regression, operator regression, least absolute shrinkage selection, radiomic feature construction, and feature selection were utilized. The predictive performance of the radiomic signatures was assessed using the analyses of the receiver operating characteristic (ROC) curve, decision curve (DCA), and precision-recall (PR) curve. To evaluate the correlation between the radiomic score (Rad-score) and <i>CXCL10</i> expression, the Wilcoxon rank-sum test was applied.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>Three radiomics models effectively predicted <i>CXCL10</i> expression levels (AUC = 0.791, 0.748, and 0.718 for the set of training; AUC = 0.761, 0.746, and 0.701 for the set of validation). A higher Rad-score significantly correlated with upregulated <i>CXCL10</i> expression.</p>\n </section>\n \n <section>\n \n <h3> Conclusion</h3>\n \n <p><i>CXCL10</i> expression can be predicted noninvasively and preoperatively via radiomic signatures based on contrast-enhanced CT images.</p>\n </section>\n </div>","PeriodicalId":9440,"journal":{"name":"Cancer reports","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11499071/pdf/","citationCount":"0","resultStr":"{\"title\":\"Radiomics Signatures Based on Computed Tomography for Noninvasive Prediction of CXCL10 Expression and Prognosis in Ovarian Cancer\",\"authors\":\"Xiaohua Wang,&nbsp;Yuanyuan Xing,&nbsp;Xuan Zhou,&nbsp;Chunhui Wang,&nbsp;Shuyu Han,&nbsp;Sufen Zhao\",\"doi\":\"10.1002/cnr2.70030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <h3> Background</h3>\\n \\n <p>Ovarian cancer (OC) is an aggressive gynecological tumor usually diagnosed with malignant ascites and even observed widespread metastasis or distant spread.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Aims</h3>\\n \\n <p>We aimed to develop and identify radiomics models according to computed tomography (CT) for preoperative prediction of <i>CXCL10</i> expression and prognosis in patients with OC.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Methods</h3>\\n \\n <p>Genomic data with CT images and corresponding clinicopathological parameters were extracted from The Cancer Imaging Archive (TCIA) and The Cancer Genome Atlas (TCGA). To analyze the prognosis, we carried out the univariate Cox regression analysis (UCRA), multivariate Cox regression analysis (MCRA), and Kaplan–Meier (KM) analysis. For the data reduction, logistic regression, operator regression, least absolute shrinkage selection, radiomic feature construction, and feature selection were utilized. The predictive performance of the radiomic signatures was assessed using the analyses of the receiver operating characteristic (ROC) curve, decision curve (DCA), and precision-recall (PR) curve. To evaluate the correlation between the radiomic score (Rad-score) and <i>CXCL10</i> expression, the Wilcoxon rank-sum test was applied.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Results</h3>\\n \\n <p>Three radiomics models effectively predicted <i>CXCL10</i> expression levels (AUC = 0.791, 0.748, and 0.718 for the set of training; AUC = 0.761, 0.746, and 0.701 for the set of validation). A higher Rad-score significantly correlated with upregulated <i>CXCL10</i> expression.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Conclusion</h3>\\n \\n <p><i>CXCL10</i> expression can be predicted noninvasively and preoperatively via radiomic signatures based on contrast-enhanced CT images.</p>\\n </section>\\n </div>\",\"PeriodicalId\":9440,\"journal\":{\"name\":\"Cancer reports\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11499071/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cancer reports\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cnr2.70030\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer reports","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cnr2.70030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景:卵巢癌(OC)是一种侵袭性妇科肿瘤:卵巢癌(OC)是一种侵袭性妇科肿瘤,通常以恶性腹水确诊,甚至可观察到广泛转移或远处扩散。目的:我们旨在根据计算机断层扫描(CT)开发和确定放射组学模型,用于术前预测OC患者的CXCL10表达和预后:从癌症影像档案(TCIA)和癌症基因组图谱(TCGA)中提取了带有CT图像和相应临床病理参数的基因组数据。为了分析预后,我们进行了单变量 Cox 回归分析(UCRA)、多变量 Cox 回归分析(MCRA)和 Kaplan-Meier 分析(KM)。在数据缩减方面,采用了逻辑回归、算子回归、最小绝对缩减选择、放射特征构建和特征选择等方法。利用接收者操作特征曲线(ROC)、决策曲线(DCA)和精确度-召回(PR)曲线分析评估了放射学特征的预测性能。为了评估放射组学评分(Rad-score)与CXCL10表达之间的相关性,采用了Wilcoxon秩和检验:结果:三种放射组学模型能有效预测 CXCL10 的表达水平(训练集的 AUC = 0.791、0.748 和 0.718;验证集的 AUC = 0.761、0.746 和 0.701)。较高的 Rad 评分与上调的 CXCL10 表达明显相关:结论:CXCL10的表达可以通过基于对比增强CT图像的放射学特征进行无创和术前预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Radiomics Signatures Based on Computed Tomography for Noninvasive Prediction of CXCL10 Expression and Prognosis in Ovarian Cancer

Radiomics Signatures Based on Computed Tomography for Noninvasive Prediction of CXCL10 Expression and Prognosis in Ovarian Cancer

Background

Ovarian cancer (OC) is an aggressive gynecological tumor usually diagnosed with malignant ascites and even observed widespread metastasis or distant spread.

Aims

We aimed to develop and identify radiomics models according to computed tomography (CT) for preoperative prediction of CXCL10 expression and prognosis in patients with OC.

Methods

Genomic data with CT images and corresponding clinicopathological parameters were extracted from The Cancer Imaging Archive (TCIA) and The Cancer Genome Atlas (TCGA). To analyze the prognosis, we carried out the univariate Cox regression analysis (UCRA), multivariate Cox regression analysis (MCRA), and Kaplan–Meier (KM) analysis. For the data reduction, logistic regression, operator regression, least absolute shrinkage selection, radiomic feature construction, and feature selection were utilized. The predictive performance of the radiomic signatures was assessed using the analyses of the receiver operating characteristic (ROC) curve, decision curve (DCA), and precision-recall (PR) curve. To evaluate the correlation between the radiomic score (Rad-score) and CXCL10 expression, the Wilcoxon rank-sum test was applied.

Results

Three radiomics models effectively predicted CXCL10 expression levels (AUC = 0.791, 0.748, and 0.718 for the set of training; AUC = 0.761, 0.746, and 0.701 for the set of validation). A higher Rad-score significantly correlated with upregulated CXCL10 expression.

Conclusion

CXCL10 expression can be predicted noninvasively and preoperatively via radiomic signatures based on contrast-enhanced CT images.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cancer reports
Cancer reports Medicine-Oncology
CiteScore
2.70
自引率
5.90%
发文量
160
审稿时长
17 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信