Cong Li, Pengwei Luo, Fengzhu Guo, Xu Jia, Min Shen, Ting Zhang, Shusen Wang, Ting Du
{"title":"通过 NID1/AKT 信号转导鉴定 HSPG2 为膀胱促肿瘤蛋白","authors":"Cong Li, Pengwei Luo, Fengzhu Guo, Xu Jia, Min Shen, Ting Zhang, Shusen Wang, Ting Du","doi":"10.1186/s12935-024-03527-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Heparan sulfate proteoglycans (HSPGs) are complex molecules found on the cell membrane and within the extracellular matrix, increasingly recognized for their role in tumor progression. This study aimed to investigate the involvement of Heparan sulfate proteoglycan 2 (HSPG2) in the progression of bladder cancer.</p><p><strong>Methods: </strong>We identified HSPG2 as a promoter of bladder tumor progression using single-cell RNA sequencing and transcriptome analysis of sequencing data from seven patient samples obtained from the Gene Expression Omnibus (GEO) database (GSE135337). Transcript profiles of 28 normal tissues and 407 bladder tumor tissues were analyzed for HSPG2 expression and survival outcomes using the Sanger tools and cBioPortal databases. HSPG2-overexpressing T24 and Biu-87 cell lines were generated, and cell proliferation and migration were assessed using CCK-8 and Transwell assays. Western blotting and immunostaining were performed to evaluate the activation of Nidogen-1 (NID1)/protein kinase B (AKT) signaling. Mouse models with patient-derived tumor organoids (HSPG2<sup>high</sup> and HSPG2<sup>low</sup>) were established to assess anticancer effects.</p><p><strong>Results: </strong>Our results demonstrated a marked upregulation of HSPG2 in malignant bladder tumors, which correlated significantly with poor patient prognosis. HSPG2 overexpression consistently enhanced bladder tumor cell proliferation and conferred chemotherapy resistance, as shown in both in vitro and in vivo experiments. Mechanistically, HSPG2 upregulated NID1 expression, leading to the activation of the AKT pro-survival signaling pathway and promoting sustained tumor growth in bladder cancer.</p><p><strong>Conclusion: </strong>This study highlights the critical pro-tumor role of HSPG2/NID1/AKT signaling in bladder cancer and suggests its potential as a therapeutic target in clinical treatment.</p>","PeriodicalId":9385,"journal":{"name":"Cancer Cell International","volume":"24 1","pages":"345"},"PeriodicalIF":5.3000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11515648/pdf/","citationCount":"0","resultStr":"{\"title\":\"Identification of HSPG2 as a bladder pro-tumor protein through NID1/AKT signaling.\",\"authors\":\"Cong Li, Pengwei Luo, Fengzhu Guo, Xu Jia, Min Shen, Ting Zhang, Shusen Wang, Ting Du\",\"doi\":\"10.1186/s12935-024-03527-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>Heparan sulfate proteoglycans (HSPGs) are complex molecules found on the cell membrane and within the extracellular matrix, increasingly recognized for their role in tumor progression. This study aimed to investigate the involvement of Heparan sulfate proteoglycan 2 (HSPG2) in the progression of bladder cancer.</p><p><strong>Methods: </strong>We identified HSPG2 as a promoter of bladder tumor progression using single-cell RNA sequencing and transcriptome analysis of sequencing data from seven patient samples obtained from the Gene Expression Omnibus (GEO) database (GSE135337). Transcript profiles of 28 normal tissues and 407 bladder tumor tissues were analyzed for HSPG2 expression and survival outcomes using the Sanger tools and cBioPortal databases. HSPG2-overexpressing T24 and Biu-87 cell lines were generated, and cell proliferation and migration were assessed using CCK-8 and Transwell assays. Western blotting and immunostaining were performed to evaluate the activation of Nidogen-1 (NID1)/protein kinase B (AKT) signaling. Mouse models with patient-derived tumor organoids (HSPG2<sup>high</sup> and HSPG2<sup>low</sup>) were established to assess anticancer effects.</p><p><strong>Results: </strong>Our results demonstrated a marked upregulation of HSPG2 in malignant bladder tumors, which correlated significantly with poor patient prognosis. HSPG2 overexpression consistently enhanced bladder tumor cell proliferation and conferred chemotherapy resistance, as shown in both in vitro and in vivo experiments. Mechanistically, HSPG2 upregulated NID1 expression, leading to the activation of the AKT pro-survival signaling pathway and promoting sustained tumor growth in bladder cancer.</p><p><strong>Conclusion: </strong>This study highlights the critical pro-tumor role of HSPG2/NID1/AKT signaling in bladder cancer and suggests its potential as a therapeutic target in clinical treatment.</p>\",\"PeriodicalId\":9385,\"journal\":{\"name\":\"Cancer Cell International\",\"volume\":\"24 1\",\"pages\":\"345\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11515648/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cancer Cell International\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s12935-024-03527-7\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Cell International","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12935-024-03527-7","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
Identification of HSPG2 as a bladder pro-tumor protein through NID1/AKT signaling.
Purpose: Heparan sulfate proteoglycans (HSPGs) are complex molecules found on the cell membrane and within the extracellular matrix, increasingly recognized for their role in tumor progression. This study aimed to investigate the involvement of Heparan sulfate proteoglycan 2 (HSPG2) in the progression of bladder cancer.
Methods: We identified HSPG2 as a promoter of bladder tumor progression using single-cell RNA sequencing and transcriptome analysis of sequencing data from seven patient samples obtained from the Gene Expression Omnibus (GEO) database (GSE135337). Transcript profiles of 28 normal tissues and 407 bladder tumor tissues were analyzed for HSPG2 expression and survival outcomes using the Sanger tools and cBioPortal databases. HSPG2-overexpressing T24 and Biu-87 cell lines were generated, and cell proliferation and migration were assessed using CCK-8 and Transwell assays. Western blotting and immunostaining were performed to evaluate the activation of Nidogen-1 (NID1)/protein kinase B (AKT) signaling. Mouse models with patient-derived tumor organoids (HSPG2high and HSPG2low) were established to assess anticancer effects.
Results: Our results demonstrated a marked upregulation of HSPG2 in malignant bladder tumors, which correlated significantly with poor patient prognosis. HSPG2 overexpression consistently enhanced bladder tumor cell proliferation and conferred chemotherapy resistance, as shown in both in vitro and in vivo experiments. Mechanistically, HSPG2 upregulated NID1 expression, leading to the activation of the AKT pro-survival signaling pathway and promoting sustained tumor growth in bladder cancer.
Conclusion: This study highlights the critical pro-tumor role of HSPG2/NID1/AKT signaling in bladder cancer and suggests its potential as a therapeutic target in clinical treatment.
期刊介绍:
Cancer Cell International publishes articles on all aspects of cancer cell biology, originating largely from, but not limited to, work using cell culture techniques.
The journal focuses on novel cancer studies reporting data from biological experiments performed on cells grown in vitro, in two- or three-dimensional systems, and/or in vivo (animal experiments). These types of experiments have provided crucial data in many fields, from cell proliferation and transformation, to epithelial-mesenchymal interaction, to apoptosis, and host immune response to tumors.
Cancer Cell International also considers articles that focus on novel technologies or novel pathways in molecular analysis and on epidemiological studies that may affect patient care, as well as articles reporting translational cancer research studies where in vitro discoveries are bridged to the clinic. As such, the journal is interested in laboratory and animal studies reporting on novel biomarkers of tumor progression and response to therapy and on their applicability to human cancers.