Savvini Gkouma, Nayanika Bhalla, Solène Frapard, Alexander Jönsson, Hakan Gürbüz, Asli Aybike Dogan, Stefania Giacomello, Martin Duvfa, Patrik L Ståhl, Mona Widhe, My Hedhammar
{"title":"由重组丝支持的独立单层和双层人体皮肤三维模型具有原生空间组织特征。","authors":"Savvini Gkouma, Nayanika Bhalla, Solène Frapard, Alexander Jönsson, Hakan Gürbüz, Asli Aybike Dogan, Stefania Giacomello, Martin Duvfa, Patrik L Ståhl, Mona Widhe, My Hedhammar","doi":"10.1088/1758-5090/ad8b72","DOIUrl":null,"url":null,"abstract":"<p><p>Physiologically relevant human skin models that include key skin cell types can be used for<i>in vitro</i>drug testing, skin pathology studies, or clinical applications such as skin grafts. However, there is still no golden standard for such a model. We investigated the potential of a recombinant functionalized spider silk protein, FN-silk, for the construction of a dermal, an epidermal, and a bilayered skin equivalent (BSE). Specifically, two formats of FN-silk (i.e. 3D network and nanomembrane) were evaluated. The 3D network was used as an elastic ECM-like support for the dermis, and the thin, permeable nanomembrane was used as a basement membrane to support the epidermal epithelium. Immunofluorescence microscopy and spatially resolved transcriptomics analysis demonstrated the secretion of key ECM components and the formation of microvascular-like structures. Furthermore, the epidermal layer exhibited clear stratification and the formation of a cornified layer, resulting in a tight physiologic epithelial barrier. Our findings indicate that the presented FN-silk-based skin models can be proposed as physiologically relevant standalone epidermal or dermal models, as well as a combined BSE.</p>","PeriodicalId":8964,"journal":{"name":"Biofabrication","volume":" ","pages":""},"PeriodicalIF":8.2000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Standalone single- and bi-layered human skin 3D models supported by recombinant silk feature native spatial organization.\",\"authors\":\"Savvini Gkouma, Nayanika Bhalla, Solène Frapard, Alexander Jönsson, Hakan Gürbüz, Asli Aybike Dogan, Stefania Giacomello, Martin Duvfa, Patrik L Ståhl, Mona Widhe, My Hedhammar\",\"doi\":\"10.1088/1758-5090/ad8b72\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Physiologically relevant human skin models that include key skin cell types can be used for<i>in vitro</i>drug testing, skin pathology studies, or clinical applications such as skin grafts. However, there is still no golden standard for such a model. We investigated the potential of a recombinant functionalized spider silk protein, FN-silk, for the construction of a dermal, an epidermal, and a bilayered skin equivalent (BSE). Specifically, two formats of FN-silk (i.e. 3D network and nanomembrane) were evaluated. The 3D network was used as an elastic ECM-like support for the dermis, and the thin, permeable nanomembrane was used as a basement membrane to support the epidermal epithelium. Immunofluorescence microscopy and spatially resolved transcriptomics analysis demonstrated the secretion of key ECM components and the formation of microvascular-like structures. Furthermore, the epidermal layer exhibited clear stratification and the formation of a cornified layer, resulting in a tight physiologic epithelial barrier. Our findings indicate that the presented FN-silk-based skin models can be proposed as physiologically relevant standalone epidermal or dermal models, as well as a combined BSE.</p>\",\"PeriodicalId\":8964,\"journal\":{\"name\":\"Biofabrication\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2024-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biofabrication\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1088/1758-5090/ad8b72\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biofabrication","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1758-5090/ad8b72","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Standalone single- and bi-layered human skin 3D models supported by recombinant silk feature native spatial organization.
Physiologically relevant human skin models that include key skin cell types can be used forin vitrodrug testing, skin pathology studies, or clinical applications such as skin grafts. However, there is still no golden standard for such a model. We investigated the potential of a recombinant functionalized spider silk protein, FN-silk, for the construction of a dermal, an epidermal, and a bilayered skin equivalent (BSE). Specifically, two formats of FN-silk (i.e. 3D network and nanomembrane) were evaluated. The 3D network was used as an elastic ECM-like support for the dermis, and the thin, permeable nanomembrane was used as a basement membrane to support the epidermal epithelium. Immunofluorescence microscopy and spatially resolved transcriptomics analysis demonstrated the secretion of key ECM components and the formation of microvascular-like structures. Furthermore, the epidermal layer exhibited clear stratification and the formation of a cornified layer, resulting in a tight physiologic epithelial barrier. Our findings indicate that the presented FN-silk-based skin models can be proposed as physiologically relevant standalone epidermal or dermal models, as well as a combined BSE.
期刊介绍:
Biofabrication is dedicated to advancing cutting-edge research on the utilization of cells, proteins, biological materials, and biomaterials as fundamental components for the construction of biological systems and/or therapeutic products. Additionally, it proudly serves as the official journal of the International Society for Biofabrication (ISBF).