Zhitong Li, Panna Kovács, Alice Le Friec, Bjarke Nørrehvedde Jensen, Jens Vinge Nygaard, Menglin Chen
{"title":"基于机械记忆的分层弹性心脏组织生物制造。","authors":"Zhitong Li, Panna Kovács, Alice Le Friec, Bjarke Nørrehvedde Jensen, Jens Vinge Nygaard, Menglin Chen","doi":"10.1088/1758-5090/ad89fd","DOIUrl":null,"url":null,"abstract":"<p><p>Mimicking the multilayered, anisotropic, elastic structure of cardiac tissues for controlled guidiance of 3D cellular orientation is essential in designing bionic scaffolds for cardiac tissue biofabrication. Here, a hierarchically organized, anisotropic, wavy and conductive polycaprolactone/Au scaffold was created in a facile fashion based on mechanical memory during fabrication. The bionic 3D scaffold shows good biocompatibility, excellent biomimetic mechanical properties that guide myoblast alignment, support the hyperelastic behavior observed in native cardiac muscle tissue, and promote myotube maturation, which holds potential for cardiac muscle engineering and the establishment of an<i>in vitro</i>culture platform for drug screening.</p>","PeriodicalId":8964,"journal":{"name":"Biofabrication","volume":" ","pages":""},"PeriodicalIF":8.2000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanical memory based biofabrication of hierarchical elastic cardiac tissue.\",\"authors\":\"Zhitong Li, Panna Kovács, Alice Le Friec, Bjarke Nørrehvedde Jensen, Jens Vinge Nygaard, Menglin Chen\",\"doi\":\"10.1088/1758-5090/ad89fd\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Mimicking the multilayered, anisotropic, elastic structure of cardiac tissues for controlled guidiance of 3D cellular orientation is essential in designing bionic scaffolds for cardiac tissue biofabrication. Here, a hierarchically organized, anisotropic, wavy and conductive polycaprolactone/Au scaffold was created in a facile fashion based on mechanical memory during fabrication. The bionic 3D scaffold shows good biocompatibility, excellent biomimetic mechanical properties that guide myoblast alignment, support the hyperelastic behavior observed in native cardiac muscle tissue, and promote myotube maturation, which holds potential for cardiac muscle engineering and the establishment of an<i>in vitro</i>culture platform for drug screening.</p>\",\"PeriodicalId\":8964,\"journal\":{\"name\":\"Biofabrication\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2024-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biofabrication\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1088/1758-5090/ad89fd\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biofabrication","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1758-5090/ad89fd","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Mechanical memory based biofabrication of hierarchical elastic cardiac tissue.
Mimicking the multilayered, anisotropic, elastic structure of cardiac tissues for controlled guidiance of 3D cellular orientation is essential in designing bionic scaffolds for cardiac tissue biofabrication. Here, a hierarchically organized, anisotropic, wavy and conductive polycaprolactone/Au scaffold was created in a facile fashion based on mechanical memory during fabrication. The bionic 3D scaffold shows good biocompatibility, excellent biomimetic mechanical properties that guide myoblast alignment, support the hyperelastic behavior observed in native cardiac muscle tissue, and promote myotube maturation, which holds potential for cardiac muscle engineering and the establishment of anin vitroculture platform for drug screening.
期刊介绍:
Biofabrication is dedicated to advancing cutting-edge research on the utilization of cells, proteins, biological materials, and biomaterials as fundamental components for the construction of biological systems and/or therapeutic products. Additionally, it proudly serves as the official journal of the International Society for Biofabrication (ISBF).