在绵羊模型中评估硬度匹配的 3D 打印镍钛下颌骨移植物固定。

IF 2.9 4区 医学 Q3 ENGINEERING, BIOMEDICAL
Nada Raafat Khattab, Luis H Olivas-Alanis, Agnieszka Chmielewska-Wysocka, Hany Emam, Ryan Brune, Ahmadreza Jahadakbar, Sahil Khambhampati, Joseph Lozier, Keyvan Safaei, Roman Skoracki, Mohammad Elahinia, David Dean
{"title":"在绵羊模型中评估硬度匹配的 3D 打印镍钛下颌骨移植物固定。","authors":"Nada Raafat Khattab, Luis H Olivas-Alanis, Agnieszka Chmielewska-Wysocka, Hany Emam, Ryan Brune, Ahmadreza Jahadakbar, Sahil Khambhampati, Joseph Lozier, Keyvan Safaei, Roman Skoracki, Mohammad Elahinia, David Dean","doi":"10.1186/s12938-024-01289-x","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Manually bent, standard-of-care, Ti-6Al-4V, mandibular graft fixation devices are associated with a significant post-operative failure rate. These failures require the patient to endure stressful and expensive re-operation. The approach recommended in this report demonstrates the optimization of graft fixation device mechanical properties via \"stiffness-matching\" by varying the fixation device's location, shape, and material composition through simulation of the device's post-operative performance. This provides information during pre-operative planning that may avoid future device failure. Optimized performance may combine translation of all loading into compression of the bone graft with the adjacent bone segments and elimination or minimization of post-healing interruption of normal stress-strain (loading) trajectories.</p><p><strong>Results: </strong>This study reports a sheep mandibular graft model where four animals received virtually optimized, experimental nickel-titanium (NiTi) fixation plates fabricated using laser beam powder bed fusion (LPBF) additive manufacturing (AM). The last animal, our control, received a standard-of-care, manually bent, Ti-6Al-4V (aka Ti64) fixation plate. A 17.5-mm mandibular graft healed completely in all four animals receiving the experimental device. Experimental NiTi-implanted sheep experienced mandibular bone healing and restoration. The Ti64 plate, in the control animal, fractured and dislocated shortly after being implanted.</p><p><strong>Conclusion: </strong>The use of stiffness-matched implants, by means of plate material (NiTi) and geometry (porosity) enhanced bone healing and promoted better load transfer to the healed bone when compared to the bulk Ti64 found in the fixation plate that the Control animal received. The design technique and screw orientation and depth planning improved throughout the study leading to more rapid healing. The large animal model reported here provides data useful for a follow-on clinical trial.</p>","PeriodicalId":8927,"journal":{"name":"BioMedical Engineering OnLine","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11515221/pdf/","citationCount":"0","resultStr":"{\"title\":\"Evaluation of stiffness-matched, 3D-printed, NiTi mandibular graft fixation in an ovine model.\",\"authors\":\"Nada Raafat Khattab, Luis H Olivas-Alanis, Agnieszka Chmielewska-Wysocka, Hany Emam, Ryan Brune, Ahmadreza Jahadakbar, Sahil Khambhampati, Joseph Lozier, Keyvan Safaei, Roman Skoracki, Mohammad Elahinia, David Dean\",\"doi\":\"10.1186/s12938-024-01289-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Manually bent, standard-of-care, Ti-6Al-4V, mandibular graft fixation devices are associated with a significant post-operative failure rate. These failures require the patient to endure stressful and expensive re-operation. The approach recommended in this report demonstrates the optimization of graft fixation device mechanical properties via \\\"stiffness-matching\\\" by varying the fixation device's location, shape, and material composition through simulation of the device's post-operative performance. This provides information during pre-operative planning that may avoid future device failure. Optimized performance may combine translation of all loading into compression of the bone graft with the adjacent bone segments and elimination or minimization of post-healing interruption of normal stress-strain (loading) trajectories.</p><p><strong>Results: </strong>This study reports a sheep mandibular graft model where four animals received virtually optimized, experimental nickel-titanium (NiTi) fixation plates fabricated using laser beam powder bed fusion (LPBF) additive manufacturing (AM). The last animal, our control, received a standard-of-care, manually bent, Ti-6Al-4V (aka Ti64) fixation plate. A 17.5-mm mandibular graft healed completely in all four animals receiving the experimental device. Experimental NiTi-implanted sheep experienced mandibular bone healing and restoration. The Ti64 plate, in the control animal, fractured and dislocated shortly after being implanted.</p><p><strong>Conclusion: </strong>The use of stiffness-matched implants, by means of plate material (NiTi) and geometry (porosity) enhanced bone healing and promoted better load transfer to the healed bone when compared to the bulk Ti64 found in the fixation plate that the Control animal received. The design technique and screw orientation and depth planning improved throughout the study leading to more rapid healing. The large animal model reported here provides data useful for a follow-on clinical trial.</p>\",\"PeriodicalId\":8927,\"journal\":{\"name\":\"BioMedical Engineering OnLine\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11515221/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BioMedical Engineering OnLine\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1186/s12938-024-01289-x\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BioMedical Engineering OnLine","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12938-024-01289-x","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

背景:手动弯曲、标准护理、Ti-6Al-4V 下颌骨移植物固定装置的术后失败率很高。这些失败需要患者承受压力和昂贵的再次手术。本报告推荐的方法展示了通过 "刚度匹配 "优化移植物固定装置机械性能的方法,即通过模拟装置的术后性能来改变固定装置的位置、形状和材料成分。这为术前规划提供了信息,可避免未来的装置故障。优化性能可将所有加载转化为骨移植与邻近骨段的压缩,并消除或尽量减少愈合后正常应力-应变(加载)轨迹的中断:本研究报告了一个绵羊下颌骨移植模型,其中四只动物接受了利用激光束粉末床融合(LPBF)增材制造(AM)技术制作的经过实际优化的实验性镍钛(NiTi)固定板。最后一只动物,也就是我们的对照组,接受的是人工弯曲的标准钛-6Al-4V(又称 Ti64)固定板。接受实验装置的所有四只动物的 17.5 毫米下颌骨移植物均完全愈合。植入镍钛的实验绵羊下颌骨愈合并恢复。对照组的钛64钢板在植入后不久就发生了断裂和脱位:结论:与对照组动物使用的Ti64固定钢板相比,通过钢板材料(镍钛)和几何形状(多孔性)使用硬度匹配的植入体可促进骨愈合,并更好地将负荷传递到愈合的骨。在整个研究过程中,设计技术、螺钉方向和深度规划都得到了改进,从而加快了愈合速度。本文报告的大型动物模型为后续临床试验提供了有用的数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evaluation of stiffness-matched, 3D-printed, NiTi mandibular graft fixation in an ovine model.

Background: Manually bent, standard-of-care, Ti-6Al-4V, mandibular graft fixation devices are associated with a significant post-operative failure rate. These failures require the patient to endure stressful and expensive re-operation. The approach recommended in this report demonstrates the optimization of graft fixation device mechanical properties via "stiffness-matching" by varying the fixation device's location, shape, and material composition through simulation of the device's post-operative performance. This provides information during pre-operative planning that may avoid future device failure. Optimized performance may combine translation of all loading into compression of the bone graft with the adjacent bone segments and elimination or minimization of post-healing interruption of normal stress-strain (loading) trajectories.

Results: This study reports a sheep mandibular graft model where four animals received virtually optimized, experimental nickel-titanium (NiTi) fixation plates fabricated using laser beam powder bed fusion (LPBF) additive manufacturing (AM). The last animal, our control, received a standard-of-care, manually bent, Ti-6Al-4V (aka Ti64) fixation plate. A 17.5-mm mandibular graft healed completely in all four animals receiving the experimental device. Experimental NiTi-implanted sheep experienced mandibular bone healing and restoration. The Ti64 plate, in the control animal, fractured and dislocated shortly after being implanted.

Conclusion: The use of stiffness-matched implants, by means of plate material (NiTi) and geometry (porosity) enhanced bone healing and promoted better load transfer to the healed bone when compared to the bulk Ti64 found in the fixation plate that the Control animal received. The design technique and screw orientation and depth planning improved throughout the study leading to more rapid healing. The large animal model reported here provides data useful for a follow-on clinical trial.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
BioMedical Engineering OnLine
BioMedical Engineering OnLine 工程技术-工程:生物医学
CiteScore
6.70
自引率
2.60%
发文量
79
审稿时长
1 months
期刊介绍: BioMedical Engineering OnLine is an open access, peer-reviewed journal that is dedicated to publishing research in all areas of biomedical engineering. BioMedical Engineering OnLine is aimed at readers and authors throughout the world, with an interest in using tools of the physical and data sciences and techniques in engineering to understand and solve problems in the biological and medical sciences. Topical areas include, but are not limited to: Bioinformatics- Bioinstrumentation- Biomechanics- Biomedical Devices & Instrumentation- Biomedical Signal Processing- Healthcare Information Systems- Human Dynamics- Neural Engineering- Rehabilitation Engineering- Biomaterials- Biomedical Imaging & Image Processing- BioMEMS and On-Chip Devices- Bio-Micro/Nano Technologies- Biomolecular Engineering- Biosensors- Cardiovascular Systems Engineering- Cellular Engineering- Clinical Engineering- Computational Biology- Drug Delivery Technologies- Modeling Methodologies- Nanomaterials and Nanotechnology in Biomedicine- Respiratory Systems Engineering- Robotics in Medicine- Systems and Synthetic Biology- Systems Biology- Telemedicine/Smartphone Applications in Medicine- Therapeutic Systems, Devices and Technologies- Tissue Engineering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信