探究骨化三醇与五硼酸钠联合疗法对 HepG2 肝细胞癌细胞的抗肿瘤作用机制

IF 3.4 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Nurdan Sena Degirmenci, Gamze Padar, Fikrettin Sahin, Zehra Omeroglu Ulu
{"title":"探究骨化三醇与五硼酸钠联合疗法对 HepG2 肝细胞癌细胞的抗肿瘤作用机制","authors":"Nurdan Sena Degirmenci, Gamze Padar, Fikrettin Sahin, Zehra Omeroglu Ulu","doi":"10.1007/s12011-024-04416-w","DOIUrl":null,"url":null,"abstract":"<p><p>Hepatocellular carcinoma (HCC) is one of the most common primary liver cancers worldwide and is often associated with poor prognosis due to drug resistance. Combination therapies demonstrate superior efficacy at lower drug dosages on cancer cells compared to single treatments, resulting in less drug resistance in the cells. This study investigates the synergistic anti-tumoral effects of calcitriol, the biologically active form of vitamin D, and sodium pentaborate pentahydrate (NaB) on HepG2 cells. We examined the cell viability of NaB, calcitriol, or the combination of NaB and calcitriol on HepG2 cells and healthy human hepatic stellate cells (HHSC) using MTS. Our findings showed that combination therapy with 3.3 mM NaB and 1 µM calcitriol has a synergistic effect and a more cytotoxic effect on HepG2 cells. This combination significantly increased apoptosis and ROS levels compared to treatment alone with NaB or calcitriol. Gene expression and proteomics analysis revealed inhibition of DNA replication and the cell cycle process, further confirming the potent anti-proliferative effects of the combination therapy. When HepG2 cells were treated with a combination of 3.3 mM NaB and 1 µM calcitriol, mRNA levels of apoptosis-related genes AKT1 and MDM2 were downregulated, while p53 was upregulated. Additionally, cell cycle-related genes CDKN1A, GADD45A, and p27 were upregulated, whereas MCM2, MCM5, and MCM7 were downregulated. Furthermore, genes associated with the vitamin D receptor (VDR), including VDR and CYP24A1, were upregulated, while CYP27B1 was downregulated. Our proteomic analysis revealed decreased MCM2 and MCM5 protein expressions which was confirmed by western blotting. In conclusion, this study highlights the potential of NaB and calcitriol as a promising therapeutic strategy for HCC.</p>","PeriodicalId":8917,"journal":{"name":"Biological Trace Element Research","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigating the Mechanisms of Anti-tumoral Effect of Combination Therapy of Calcitriol and Sodium Pentaborate Pentahydrate on HepG2 Hepatocellular Carcinoma Cells.\",\"authors\":\"Nurdan Sena Degirmenci, Gamze Padar, Fikrettin Sahin, Zehra Omeroglu Ulu\",\"doi\":\"10.1007/s12011-024-04416-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Hepatocellular carcinoma (HCC) is one of the most common primary liver cancers worldwide and is often associated with poor prognosis due to drug resistance. Combination therapies demonstrate superior efficacy at lower drug dosages on cancer cells compared to single treatments, resulting in less drug resistance in the cells. This study investigates the synergistic anti-tumoral effects of calcitriol, the biologically active form of vitamin D, and sodium pentaborate pentahydrate (NaB) on HepG2 cells. We examined the cell viability of NaB, calcitriol, or the combination of NaB and calcitriol on HepG2 cells and healthy human hepatic stellate cells (HHSC) using MTS. Our findings showed that combination therapy with 3.3 mM NaB and 1 µM calcitriol has a synergistic effect and a more cytotoxic effect on HepG2 cells. This combination significantly increased apoptosis and ROS levels compared to treatment alone with NaB or calcitriol. Gene expression and proteomics analysis revealed inhibition of DNA replication and the cell cycle process, further confirming the potent anti-proliferative effects of the combination therapy. When HepG2 cells were treated with a combination of 3.3 mM NaB and 1 µM calcitriol, mRNA levels of apoptosis-related genes AKT1 and MDM2 were downregulated, while p53 was upregulated. Additionally, cell cycle-related genes CDKN1A, GADD45A, and p27 were upregulated, whereas MCM2, MCM5, and MCM7 were downregulated. Furthermore, genes associated with the vitamin D receptor (VDR), including VDR and CYP24A1, were upregulated, while CYP27B1 was downregulated. Our proteomic analysis revealed decreased MCM2 and MCM5 protein expressions which was confirmed by western blotting. In conclusion, this study highlights the potential of NaB and calcitriol as a promising therapeutic strategy for HCC.</p>\",\"PeriodicalId\":8917,\"journal\":{\"name\":\"Biological Trace Element Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biological Trace Element Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s12011-024-04416-w\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological Trace Element Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12011-024-04416-w","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

肝细胞癌(HCC)是全球最常见的原发性肝癌之一,通常因耐药性而导致预后不良。与单一疗法相比,联合疗法能以更低的药物剂量对癌细胞产生更好的疗效,从而减少细胞的耐药性。本研究探讨了降钙素三醇(维生素 D 的生物活性形式)和五硼酸钠(NaB)对 HepG2 细胞的协同抗肿瘤作用。我们使用 MTS 检测了 NaB、降钙素三醇或 NaB 和降钙素三醇组合对 HepG2 细胞和健康人肝星状细胞(HHSC)的细胞活力。我们的研究结果表明,3.3 mM NaB 和 1 µM 降钙三醇的组合疗法具有协同效应,对 HepG2 细胞的细胞毒性更大。与单独使用 NaB 或钙三醇治疗相比,这种组合能明显增加细胞凋亡和 ROS 水平。基因表达和蛋白质组学分析表明,DNA 复制和细胞周期过程受到抑制,进一步证实了联合疗法的强效抗增殖作用。当用 3.3 mM NaB 和 1 µM 降钙三醇联合治疗 HepG2 细胞时,与细胞凋亡相关的基因 AKT1 和 MDM2 的 mRNA 水平下调,而 p53 则上调。此外,细胞周期相关基因 CDKN1A、GADD45A 和 p27 上调,而 MCM2、MCM5 和 MCM7 下调。此外,与维生素 D 受体(VDR)相关的基因(包括 VDR 和 CYP24A1)上调,而 CYP27B1 下调。我们的蛋白质组分析表明,MCM2 和 MCM5 蛋白表达量减少,这一点已被 Western 印迹法证实。总之,本研究强调了 NaB 和降钙素三醇作为 HCC 治疗策略的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Investigating the Mechanisms of Anti-tumoral Effect of Combination Therapy of Calcitriol and Sodium Pentaborate Pentahydrate on HepG2 Hepatocellular Carcinoma Cells.

Hepatocellular carcinoma (HCC) is one of the most common primary liver cancers worldwide and is often associated with poor prognosis due to drug resistance. Combination therapies demonstrate superior efficacy at lower drug dosages on cancer cells compared to single treatments, resulting in less drug resistance in the cells. This study investigates the synergistic anti-tumoral effects of calcitriol, the biologically active form of vitamin D, and sodium pentaborate pentahydrate (NaB) on HepG2 cells. We examined the cell viability of NaB, calcitriol, or the combination of NaB and calcitriol on HepG2 cells and healthy human hepatic stellate cells (HHSC) using MTS. Our findings showed that combination therapy with 3.3 mM NaB and 1 µM calcitriol has a synergistic effect and a more cytotoxic effect on HepG2 cells. This combination significantly increased apoptosis and ROS levels compared to treatment alone with NaB or calcitriol. Gene expression and proteomics analysis revealed inhibition of DNA replication and the cell cycle process, further confirming the potent anti-proliferative effects of the combination therapy. When HepG2 cells were treated with a combination of 3.3 mM NaB and 1 µM calcitriol, mRNA levels of apoptosis-related genes AKT1 and MDM2 were downregulated, while p53 was upregulated. Additionally, cell cycle-related genes CDKN1A, GADD45A, and p27 were upregulated, whereas MCM2, MCM5, and MCM7 were downregulated. Furthermore, genes associated with the vitamin D receptor (VDR), including VDR and CYP24A1, were upregulated, while CYP27B1 was downregulated. Our proteomic analysis revealed decreased MCM2 and MCM5 protein expressions which was confirmed by western blotting. In conclusion, this study highlights the potential of NaB and calcitriol as a promising therapeutic strategy for HCC.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biological Trace Element Research
Biological Trace Element Research 生物-内分泌学与代谢
CiteScore
8.70
自引率
10.30%
发文量
459
审稿时长
2 months
期刊介绍: Biological Trace Element Research provides a much-needed central forum for the emergent, interdisciplinary field of research on the biological, environmental, and biomedical roles of trace elements. Rather than confine itself to biochemistry, the journal emphasizes the integrative aspects of trace metal research in all appropriate fields, publishing human and animal nutritional studies devoted to the fundamental chemistry and biochemistry at issue as well as to the elucidation of the relevant aspects of preventive medicine, epidemiology, clinical chemistry, agriculture, endocrinology, animal science, pharmacology, microbiology, toxicology, virology, marine biology, sensory physiology, developmental biology, and related fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信