基于 MobileNetv3 卷积神经网络的轻量级视盘和视杯分割。

IF 3.4 3区 医学 Q1 ENGINEERING, MULTIDISCIPLINARY
Yuanqiong Chen, Zhijie Liu, Yujia Meng, Jianfeng Li
{"title":"基于 MobileNetv3 卷积神经网络的轻量级视盘和视杯分割。","authors":"Yuanqiong Chen, Zhijie Liu, Yujia Meng, Jianfeng Li","doi":"10.3390/biomimetics9100637","DOIUrl":null,"url":null,"abstract":"<p><p>Glaucoma represents a significant global contributor to blindness. Accurately segmenting the optic disc (OD) and optic cup (OC) to obtain precise CDR is essential for effective screening. However, existing convolutional neural network (CNN)-based segmentation techniques are often limited by high computational demands and long inference times. This paper proposes an efficient end-to-end method for OD and OC segmentation, utilizing the lightweight MobileNetv3 network as the core feature-extraction module. Our approach combines boundary branches with adversarial learning, to achieve multi-label segmentation of the OD and OC. We validated our proposed approach across three public available datasets: Drishti-GS, RIM-ONE-r3, and REFUGE. The outcomes reveal that the Dice coefficients for the segmentation of OD and OC within these datasets are 0.974/0.900, 0.966/0.875, and 0.962/0.880, respectively. Additionally, our method substantially lowers computational complexity and inference time, thereby enabling efficient and precise segmentation of the optic disc and optic cup.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"9 10","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11506706/pdf/","citationCount":"0","resultStr":"{\"title\":\"Lightweight Optic Disc and Optic Cup Segmentation Based on MobileNetv3 Convolutional Neural Network.\",\"authors\":\"Yuanqiong Chen, Zhijie Liu, Yujia Meng, Jianfeng Li\",\"doi\":\"10.3390/biomimetics9100637\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Glaucoma represents a significant global contributor to blindness. Accurately segmenting the optic disc (OD) and optic cup (OC) to obtain precise CDR is essential for effective screening. However, existing convolutional neural network (CNN)-based segmentation techniques are often limited by high computational demands and long inference times. This paper proposes an efficient end-to-end method for OD and OC segmentation, utilizing the lightweight MobileNetv3 network as the core feature-extraction module. Our approach combines boundary branches with adversarial learning, to achieve multi-label segmentation of the OD and OC. We validated our proposed approach across three public available datasets: Drishti-GS, RIM-ONE-r3, and REFUGE. The outcomes reveal that the Dice coefficients for the segmentation of OD and OC within these datasets are 0.974/0.900, 0.966/0.875, and 0.962/0.880, respectively. Additionally, our method substantially lowers computational complexity and inference time, thereby enabling efficient and precise segmentation of the optic disc and optic cup.</p>\",\"PeriodicalId\":8907,\"journal\":{\"name\":\"Biomimetics\",\"volume\":\"9 10\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11506706/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomimetics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/biomimetics9100637\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomimetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/biomimetics9100637","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

青光眼是导致全球失明的重要原因。准确分割视盘(OD)和视杯(OC)以获得精确的 CDR 对有效筛查至关重要。然而,现有的基于卷积神经网络(CNN)的分割技术往往受到计算要求高和推理时间长的限制。本文利用轻量级 MobileNetv3 网络作为核心特征提取模块,提出了一种高效的端到端 OD 和 OC 分割方法。我们的方法将边界分支与对抗学习相结合,实现了 OD 和 OC 的多标签分割。我们在三个公开数据集上验证了我们提出的方法:Drishti-GS、RIM-ONE-r3 和 REFUGE。结果显示,在这些数据集中,OD 和 OC 分割的 Dice 系数分别为 0.974/0.900、0.966/0.875 和 0.962/0.880。此外,我们的方法大大降低了计算复杂度和推理时间,从而实现了对视盘和视杯的高效、精确分割。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lightweight Optic Disc and Optic Cup Segmentation Based on MobileNetv3 Convolutional Neural Network.

Glaucoma represents a significant global contributor to blindness. Accurately segmenting the optic disc (OD) and optic cup (OC) to obtain precise CDR is essential for effective screening. However, existing convolutional neural network (CNN)-based segmentation techniques are often limited by high computational demands and long inference times. This paper proposes an efficient end-to-end method for OD and OC segmentation, utilizing the lightweight MobileNetv3 network as the core feature-extraction module. Our approach combines boundary branches with adversarial learning, to achieve multi-label segmentation of the OD and OC. We validated our proposed approach across three public available datasets: Drishti-GS, RIM-ONE-r3, and REFUGE. The outcomes reveal that the Dice coefficients for the segmentation of OD and OC within these datasets are 0.974/0.900, 0.966/0.875, and 0.962/0.880, respectively. Additionally, our method substantially lowers computational complexity and inference time, thereby enabling efficient and precise segmentation of the optic disc and optic cup.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomimetics
Biomimetics Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
3.50
自引率
11.10%
发文量
189
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信