用于灵活、坚固的多环境光电应用的双涂层抗反射薄膜。

IF 3.4 3区 医学 Q1 ENGINEERING, MULTIDISCIPLINARY
Hyuk Jae Jang, Jaemin Jeon, Joo Ho Yun, Iqbal Shudha Tasnim, Soyeon Han, Heeyoung Lee, Sungguk An, Seungbeom Kang, Dongyeon Kim, Young Min Song
{"title":"用于灵活、坚固的多环境光电应用的双涂层抗反射薄膜。","authors":"Hyuk Jae Jang, Jaemin Jeon, Joo Ho Yun, Iqbal Shudha Tasnim, Soyeon Han, Heeyoung Lee, Sungguk An, Seungbeom Kang, Dongyeon Kim, Young Min Song","doi":"10.3390/biomimetics9100644","DOIUrl":null,"url":null,"abstract":"<p><p>Artificial antireflective nanostructured surfaces, inspired by moth eyes, effectively reduce optical losses at interfaces, offering significant advantages in enhancing optical performance in various optoelectronic applications, including solar cells, light-emitting diodes, and cameras. However, their limited flexibility and low surface hardness constrain their broader use. In this study, we introduce a universal antireflective film by integrating nanostructures on both sides of a thin polycarbonate film. One side was thinly coated with Al<sub>2</sub>O<sub>3</sub> for its high hardness, enhancing surface durability while maintaining flexibility. The opposite side was coated with SiO<sub>2</sub> to optimize antireflective properties, making the film suitable for diverse environments (i.e., air, water, and adhesives). This dual-coating strategy resulted in a mechanically robust and flexible antireflective film with superior optical properties in various conditions. We demonstrated the universal capabilities of our antireflective film via optical simulations and experiments with the fabricated film in different environments.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"9 10","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11506741/pdf/","citationCount":"0","resultStr":"{\"title\":\"Dual-Coated Antireflective Film for Flexible and Robust Multi-Environmental Optoelectronic Applications.\",\"authors\":\"Hyuk Jae Jang, Jaemin Jeon, Joo Ho Yun, Iqbal Shudha Tasnim, Soyeon Han, Heeyoung Lee, Sungguk An, Seungbeom Kang, Dongyeon Kim, Young Min Song\",\"doi\":\"10.3390/biomimetics9100644\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Artificial antireflective nanostructured surfaces, inspired by moth eyes, effectively reduce optical losses at interfaces, offering significant advantages in enhancing optical performance in various optoelectronic applications, including solar cells, light-emitting diodes, and cameras. However, their limited flexibility and low surface hardness constrain their broader use. In this study, we introduce a universal antireflective film by integrating nanostructures on both sides of a thin polycarbonate film. One side was thinly coated with Al<sub>2</sub>O<sub>3</sub> for its high hardness, enhancing surface durability while maintaining flexibility. The opposite side was coated with SiO<sub>2</sub> to optimize antireflective properties, making the film suitable for diverse environments (i.e., air, water, and adhesives). This dual-coating strategy resulted in a mechanically robust and flexible antireflective film with superior optical properties in various conditions. We demonstrated the universal capabilities of our antireflective film via optical simulations and experiments with the fabricated film in different environments.</p>\",\"PeriodicalId\":8907,\"journal\":{\"name\":\"Biomimetics\",\"volume\":\"9 10\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11506741/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomimetics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/biomimetics9100644\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomimetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/biomimetics9100644","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

受飞蛾眼睛的启发,人造抗反射纳米结构表面可有效减少界面上的光学损耗,在提高太阳能电池、发光二极管和照相机等各种光电应用的光学性能方面具有显著优势。然而,它们有限的柔韧性和较低的表面硬度限制了它们的广泛应用。在本研究中,我们通过在聚碳酸酯薄膜的两面集成纳米结构,推出了一种通用型抗反射薄膜。其中一面薄薄地镀上了 Al2O3,因为 Al2O3 具有高硬度,可在保持柔韧性的同时提高表面耐久性。另一面则涂有二氧化硅,以优化抗反射特性,使薄膜适用于各种环境(如空气、水和粘合剂)。这种双涂层策略使抗反射薄膜具有机械坚固性和柔韧性,并在各种条件下具有优异的光学性能。我们通过光学模拟和在不同环境下对所制备薄膜的实验,证明了我们的抗反射薄膜的通用能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dual-Coated Antireflective Film for Flexible and Robust Multi-Environmental Optoelectronic Applications.

Artificial antireflective nanostructured surfaces, inspired by moth eyes, effectively reduce optical losses at interfaces, offering significant advantages in enhancing optical performance in various optoelectronic applications, including solar cells, light-emitting diodes, and cameras. However, their limited flexibility and low surface hardness constrain their broader use. In this study, we introduce a universal antireflective film by integrating nanostructures on both sides of a thin polycarbonate film. One side was thinly coated with Al2O3 for its high hardness, enhancing surface durability while maintaining flexibility. The opposite side was coated with SiO2 to optimize antireflective properties, making the film suitable for diverse environments (i.e., air, water, and adhesives). This dual-coating strategy resulted in a mechanically robust and flexible antireflective film with superior optical properties in various conditions. We demonstrated the universal capabilities of our antireflective film via optical simulations and experiments with the fabricated film in different environments.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomimetics
Biomimetics Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
3.50
自引率
11.10%
发文量
189
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信