Markus Zimmerl, Richard W van Nieuwenhoven, Karin Whitmore, Wilfried Vetter, Ille C Gebeshuber
{"title":"仿生冷却:用撒哈拉银蚁微结构对可生物降解壳聚糖薄膜进行功能化。","authors":"Markus Zimmerl, Richard W van Nieuwenhoven, Karin Whitmore, Wilfried Vetter, Ille C Gebeshuber","doi":"10.3390/biomimetics9100630","DOIUrl":null,"url":null,"abstract":"<p><p>The increasing occurrence of hot summer days causes stress to both humans and animals, particularly in urban areas where temperatures can remain high, even at night. Living nature offers potential solutions that require minimal energy and material costs. For instance, the Saharan silver ant (<i>Cataglyphis bombycina</i>) can endure the desert heat by means of passive radiative cooling induced by its triangular hairs. The objective of this study is to transfer the passive radiative cooling properties of the micro- and nanostructured chitin hairs of the silver ant body to technically usable, biodegradable and bio-based materials. The potential large-scale transfer of radiative cooling properties, for example, onto building exteriors such as house facades, could decrease the need for conventional cooling and, therefore, lower the energy demand. Chitosan, a chemically altered form of chitin, has a range of medical uses but can also be processed into a paper-like film. The procedure consists of dissolving chitosan in diluted acetic acid and uniformly distributing it on a flat surface. A functional structure can then be imprinted onto this film while it is drying. This study reports the successful transfer of the microstructure-based structural colors of a compact disc (CD) onto the film. Similarly, a polyvinyl siloxane imprint of the silver ant body shall make it possible to transfer cooling functionality to technically relevant surfaces. FTIR spectroscopy measurements of the reflectance of flat and structured chitosan films allow for a qualitative assessment of the infrared emissivity. A minor decrease in reflectance in a relevant wavelength range gives an indication that it is feasible to increase the emissivity and, therefore, decrease the surface temperature purely through surface-induced functionalities.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11505719/pdf/","citationCount":"0","resultStr":"{\"title\":\"Biomimetic Cooling: Functionalizing Biodegradable Chitosan Films with Saharan Silver Ant Microstructures.\",\"authors\":\"Markus Zimmerl, Richard W van Nieuwenhoven, Karin Whitmore, Wilfried Vetter, Ille C Gebeshuber\",\"doi\":\"10.3390/biomimetics9100630\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The increasing occurrence of hot summer days causes stress to both humans and animals, particularly in urban areas where temperatures can remain high, even at night. Living nature offers potential solutions that require minimal energy and material costs. For instance, the Saharan silver ant (<i>Cataglyphis bombycina</i>) can endure the desert heat by means of passive radiative cooling induced by its triangular hairs. The objective of this study is to transfer the passive radiative cooling properties of the micro- and nanostructured chitin hairs of the silver ant body to technically usable, biodegradable and bio-based materials. The potential large-scale transfer of radiative cooling properties, for example, onto building exteriors such as house facades, could decrease the need for conventional cooling and, therefore, lower the energy demand. Chitosan, a chemically altered form of chitin, has a range of medical uses but can also be processed into a paper-like film. The procedure consists of dissolving chitosan in diluted acetic acid and uniformly distributing it on a flat surface. A functional structure can then be imprinted onto this film while it is drying. This study reports the successful transfer of the microstructure-based structural colors of a compact disc (CD) onto the film. Similarly, a polyvinyl siloxane imprint of the silver ant body shall make it possible to transfer cooling functionality to technically relevant surfaces. FTIR spectroscopy measurements of the reflectance of flat and structured chitosan films allow for a qualitative assessment of the infrared emissivity. A minor decrease in reflectance in a relevant wavelength range gives an indication that it is feasible to increase the emissivity and, therefore, decrease the surface temperature purely through surface-induced functionalities.</p>\",\"PeriodicalId\":8907,\"journal\":{\"name\":\"Biomimetics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11505719/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomimetics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/biomimetics9100630\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomimetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/biomimetics9100630","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Biomimetic Cooling: Functionalizing Biodegradable Chitosan Films with Saharan Silver Ant Microstructures.
The increasing occurrence of hot summer days causes stress to both humans and animals, particularly in urban areas where temperatures can remain high, even at night. Living nature offers potential solutions that require minimal energy and material costs. For instance, the Saharan silver ant (Cataglyphis bombycina) can endure the desert heat by means of passive radiative cooling induced by its triangular hairs. The objective of this study is to transfer the passive radiative cooling properties of the micro- and nanostructured chitin hairs of the silver ant body to technically usable, biodegradable and bio-based materials. The potential large-scale transfer of radiative cooling properties, for example, onto building exteriors such as house facades, could decrease the need for conventional cooling and, therefore, lower the energy demand. Chitosan, a chemically altered form of chitin, has a range of medical uses but can also be processed into a paper-like film. The procedure consists of dissolving chitosan in diluted acetic acid and uniformly distributing it on a flat surface. A functional structure can then be imprinted onto this film while it is drying. This study reports the successful transfer of the microstructure-based structural colors of a compact disc (CD) onto the film. Similarly, a polyvinyl siloxane imprint of the silver ant body shall make it possible to transfer cooling functionality to technically relevant surfaces. FTIR spectroscopy measurements of the reflectance of flat and structured chitosan films allow for a qualitative assessment of the infrared emissivity. A minor decrease in reflectance in a relevant wavelength range gives an indication that it is feasible to increase the emissivity and, therefore, decrease the surface temperature purely through surface-induced functionalities.