{"title":"用于在密闭家庭环境中协调自力翻身的全局制导双臂反应式运动控制器。","authors":"Zihang Geng, Zhiyuan Yang, Wei Xu, Weichao Guo, Xinjun Sheng","doi":"10.3390/biomimetics9100629","DOIUrl":null,"url":null,"abstract":"<p><p>Future humanoid robots will be widely deployed in our daily lives. Motion planning and control in an unstructured, confined, and human-centered environment utilizing dexterity and a cooperative ability of dual-arm robots is still an open issue. We propose a globally guided dual-arm reactive motion controller (GGDRC) that combines the strengths of global planning and reactive methods. In this framework, a global planner module with a prospective task horizon provides feasible guidance in a Cartesian space, and a local reactive controller module addresses real-time collision avoidance and coordinated task constraints through the exploitation of dual-arm redundancy. GGDRC extends the start-of-the-art optimization-based reactive method for motion-restricted dynamic scenarios requiring dual-arm cooperation. We design a pick-handover-place task to compare the performances of these two methods. Results demonstrate that GGDRC exhibits accurate collision avoidance precision (5 mm) and a high success rate (84.5%).</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11506656/pdf/","citationCount":"0","resultStr":"{\"title\":\"A Globally Guided Dual-Arm Reactive Motion Controller for Coordinated Self-Handover in a Confined Domestic Environment.\",\"authors\":\"Zihang Geng, Zhiyuan Yang, Wei Xu, Weichao Guo, Xinjun Sheng\",\"doi\":\"10.3390/biomimetics9100629\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Future humanoid robots will be widely deployed in our daily lives. Motion planning and control in an unstructured, confined, and human-centered environment utilizing dexterity and a cooperative ability of dual-arm robots is still an open issue. We propose a globally guided dual-arm reactive motion controller (GGDRC) that combines the strengths of global planning and reactive methods. In this framework, a global planner module with a prospective task horizon provides feasible guidance in a Cartesian space, and a local reactive controller module addresses real-time collision avoidance and coordinated task constraints through the exploitation of dual-arm redundancy. GGDRC extends the start-of-the-art optimization-based reactive method for motion-restricted dynamic scenarios requiring dual-arm cooperation. We design a pick-handover-place task to compare the performances of these two methods. Results demonstrate that GGDRC exhibits accurate collision avoidance precision (5 mm) and a high success rate (84.5%).</p>\",\"PeriodicalId\":8907,\"journal\":{\"name\":\"Biomimetics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11506656/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomimetics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/biomimetics9100629\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomimetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/biomimetics9100629","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
A Globally Guided Dual-Arm Reactive Motion Controller for Coordinated Self-Handover in a Confined Domestic Environment.
Future humanoid robots will be widely deployed in our daily lives. Motion planning and control in an unstructured, confined, and human-centered environment utilizing dexterity and a cooperative ability of dual-arm robots is still an open issue. We propose a globally guided dual-arm reactive motion controller (GGDRC) that combines the strengths of global planning and reactive methods. In this framework, a global planner module with a prospective task horizon provides feasible guidance in a Cartesian space, and a local reactive controller module addresses real-time collision avoidance and coordinated task constraints through the exploitation of dual-arm redundancy. GGDRC extends the start-of-the-art optimization-based reactive method for motion-restricted dynamic scenarios requiring dual-arm cooperation. We design a pick-handover-place task to compare the performances of these two methods. Results demonstrate that GGDRC exhibits accurate collision avoidance precision (5 mm) and a high success rate (84.5%).