螺钉角度对多轴向锁定钢板固定力学性能的影响

IF 3.8 3区 医学 Q2 ENGINEERING, BIOMEDICAL
Gabriel Martínez-Fortún, Alejandro Yánez, Alberto Cuadrado
{"title":"螺钉角度对多轴向锁定钢板固定力学性能的影响","authors":"Gabriel Martínez-Fortún, Alejandro Yánez, Alberto Cuadrado","doi":"10.3390/bioengineering11101024","DOIUrl":null,"url":null,"abstract":"<p><p>Polyaxial locking systems are widely used for strategic surgical placement, particularly in cases of osteoporotic bones, comminuted fractures, or when avoiding pre-existing prosthetics. However, studies suggest that polyaxiality negatively impacts system stiffness. We hypothesize that a new plate design, combining a narrow plate with asymmetric holes and polyaxial capabilities, could outperform narrow plates with symmetric holes. Three configurations were tested: Group 1 with six orthogonal screws, and Groups 2 and 3 with polyaxiality in the longitudinal and transverse axes, respectively. A biomechanical model assessed the bone/plate/screw interface under cyclic compression (5000 cycles) and torsion loads until failure. Screws were inserted up to 10° angle. None of the groups showed a significant loss of stiffness during compression (<i>p</i> > 0.05). Group 1 exhibited the highest initial stiffness, followed by Group 3 (<29%) and Group 2 (<35%). In torsional testing, Group 1 achieved the most load cycles (29.096 ± 1.342), while Groups 2 and 3 showed significantly fewer cycles to failure (6.657 ± 3.551 and 4.085 ± 1.934). These results confirm that polyaxiality, while beneficial for surgical placement, reduces biomechanical performance under torsion. Despite this, no group experienced complete decoupling of the screw-plate interface, indicating the robustness of the locking mechanism even under high stress.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":"11 10","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11505623/pdf/","citationCount":"0","resultStr":"{\"title\":\"Influence of Screw Angulation on the Mechanical Properties on a Polyaxial Locking Plate Fixation.\",\"authors\":\"Gabriel Martínez-Fortún, Alejandro Yánez, Alberto Cuadrado\",\"doi\":\"10.3390/bioengineering11101024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Polyaxial locking systems are widely used for strategic surgical placement, particularly in cases of osteoporotic bones, comminuted fractures, or when avoiding pre-existing prosthetics. However, studies suggest that polyaxiality negatively impacts system stiffness. We hypothesize that a new plate design, combining a narrow plate with asymmetric holes and polyaxial capabilities, could outperform narrow plates with symmetric holes. Three configurations were tested: Group 1 with six orthogonal screws, and Groups 2 and 3 with polyaxiality in the longitudinal and transverse axes, respectively. A biomechanical model assessed the bone/plate/screw interface under cyclic compression (5000 cycles) and torsion loads until failure. Screws were inserted up to 10° angle. None of the groups showed a significant loss of stiffness during compression (<i>p</i> > 0.05). Group 1 exhibited the highest initial stiffness, followed by Group 3 (<29%) and Group 2 (<35%). In torsional testing, Group 1 achieved the most load cycles (29.096 ± 1.342), while Groups 2 and 3 showed significantly fewer cycles to failure (6.657 ± 3.551 and 4.085 ± 1.934). These results confirm that polyaxiality, while beneficial for surgical placement, reduces biomechanical performance under torsion. Despite this, no group experienced complete decoupling of the screw-plate interface, indicating the robustness of the locking mechanism even under high stress.</p>\",\"PeriodicalId\":8874,\"journal\":{\"name\":\"Bioengineering\",\"volume\":\"11 10\",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11505623/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioengineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/bioengineering11101024\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering11101024","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

多轴锁定系统被广泛用于战略性手术置放,尤其是在骨质疏松、粉碎性骨折或避免使用原有假体的情况下。然而,研究表明多轴性会对系统刚度产生负面影响。我们假设,一种结合了非对称孔的窄板和多轴功能的新型钢板设计,其性能可能优于对称孔的窄板。我们测试了三种配置:第 1 组有六颗正交螺钉,第 2 组和第 3 组分别在纵向和横向具有多轴性。生物力学模型对骨/钢板/螺钉界面在循环压缩(5000 次)和扭转载荷下的情况进行了评估,直至失效。螺钉的插入角度最大为 10°。各组在压缩过程中均未显示出明显的刚度损失(p > 0.05)。第 1 组的初始刚度最高,其次是第 3 组 (
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Influence of Screw Angulation on the Mechanical Properties on a Polyaxial Locking Plate Fixation.

Polyaxial locking systems are widely used for strategic surgical placement, particularly in cases of osteoporotic bones, comminuted fractures, or when avoiding pre-existing prosthetics. However, studies suggest that polyaxiality negatively impacts system stiffness. We hypothesize that a new plate design, combining a narrow plate with asymmetric holes and polyaxial capabilities, could outperform narrow plates with symmetric holes. Three configurations were tested: Group 1 with six orthogonal screws, and Groups 2 and 3 with polyaxiality in the longitudinal and transverse axes, respectively. A biomechanical model assessed the bone/plate/screw interface under cyclic compression (5000 cycles) and torsion loads until failure. Screws were inserted up to 10° angle. None of the groups showed a significant loss of stiffness during compression (p > 0.05). Group 1 exhibited the highest initial stiffness, followed by Group 3 (<29%) and Group 2 (<35%). In torsional testing, Group 1 achieved the most load cycles (29.096 ± 1.342), while Groups 2 and 3 showed significantly fewer cycles to failure (6.657 ± 3.551 and 4.085 ± 1.934). These results confirm that polyaxiality, while beneficial for surgical placement, reduces biomechanical performance under torsion. Despite this, no group experienced complete decoupling of the screw-plate interface, indicating the robustness of the locking mechanism even under high stress.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bioengineering
Bioengineering Chemical Engineering-Bioengineering
CiteScore
4.00
自引率
8.70%
发文量
661
期刊介绍: Aims Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal: ● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings. ● Manuscripts regarding research proposals and research ideas will be particularly welcomed. ● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. ● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds. Scope ● Bionics and biological cybernetics: implantology; bio–abio interfaces ● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices ● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc. ● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology ● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering ● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation ● Translational bioengineering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信