Valerie A A van Es, Ignace L J de Lathauwer, Hareld M C Kemps, Giacomo Handjaras, Monica Betta
{"title":"远程监测睡眠期间交感神经失衡及其对心血管风险评估的影响:系统回顾","authors":"Valerie A A van Es, Ignace L J de Lathauwer, Hareld M C Kemps, Giacomo Handjaras, Monica Betta","doi":"10.3390/bioengineering11101045","DOIUrl":null,"url":null,"abstract":"<p><p>Nocturnal sympathetic overdrive is an early indicator of cardiovascular (CV) disease, emphasizing the importance of reliable remote patient monitoring (RPM) for autonomic function during sleep. To be effective, RPM systems must be accurate, non-intrusive, and cost-effective. This review evaluates non-invasive technologies, metrics, and algorithms for tracking nocturnal autonomic nervous system (ANS) activity, assessing their CV relevance and feasibility for integration into RPM systems. A systematic search identified 18 relevant studies from an initial pool of 169 publications, with data extracted on study design, population characteristics, technology types, and CV implications. Modalities reviewed include electrodes (e.g., electroencephalography (EEG), electrocardiography (ECG), polysomnography (PSG)), optical sensors (e.g., photoplethysmography (PPG), peripheral arterial tone (PAT)), ballistocardiography (BCG), cameras, radars, and accelerometers. Heart rate variability (HRV) and blood pressure (BP) emerged as the most promising metrics for RPM, offering a comprehensive view of ANS function and vascular health during sleep. While electrodes provide precise HRV data, they remain intrusive, whereas optical sensors such as PPG demonstrate potential for multimodal monitoring, including HRV, SpO2, and estimates of arterial stiffness and BP. Non-intrusive methods like BCG and cameras are promising for heart and respiratory rate estimation, but less suitable for continuous HRV monitoring. In conclusion, HRV and BP are the most viable metrics for RPM, with PPG-based systems offering significant promise for non-intrusive, continuous monitoring of multiple modalities. Further research is needed to enhance accuracy, feasibility, and validation against direct measures of autonomic function, such as microneurography.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11504514/pdf/","citationCount":"0","resultStr":"{\"title\":\"Remote Monitoring of Sympathovagal Imbalance During Sleep and Its Implications in Cardiovascular Risk Assessment: A Systematic Review.\",\"authors\":\"Valerie A A van Es, Ignace L J de Lathauwer, Hareld M C Kemps, Giacomo Handjaras, Monica Betta\",\"doi\":\"10.3390/bioengineering11101045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Nocturnal sympathetic overdrive is an early indicator of cardiovascular (CV) disease, emphasizing the importance of reliable remote patient monitoring (RPM) for autonomic function during sleep. To be effective, RPM systems must be accurate, non-intrusive, and cost-effective. This review evaluates non-invasive technologies, metrics, and algorithms for tracking nocturnal autonomic nervous system (ANS) activity, assessing their CV relevance and feasibility for integration into RPM systems. A systematic search identified 18 relevant studies from an initial pool of 169 publications, with data extracted on study design, population characteristics, technology types, and CV implications. Modalities reviewed include electrodes (e.g., electroencephalography (EEG), electrocardiography (ECG), polysomnography (PSG)), optical sensors (e.g., photoplethysmography (PPG), peripheral arterial tone (PAT)), ballistocardiography (BCG), cameras, radars, and accelerometers. Heart rate variability (HRV) and blood pressure (BP) emerged as the most promising metrics for RPM, offering a comprehensive view of ANS function and vascular health during sleep. While electrodes provide precise HRV data, they remain intrusive, whereas optical sensors such as PPG demonstrate potential for multimodal monitoring, including HRV, SpO2, and estimates of arterial stiffness and BP. Non-intrusive methods like BCG and cameras are promising for heart and respiratory rate estimation, but less suitable for continuous HRV monitoring. In conclusion, HRV and BP are the most viable metrics for RPM, with PPG-based systems offering significant promise for non-intrusive, continuous monitoring of multiple modalities. Further research is needed to enhance accuracy, feasibility, and validation against direct measures of autonomic function, such as microneurography.</p>\",\"PeriodicalId\":8874,\"journal\":{\"name\":\"Bioengineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11504514/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioengineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/bioengineering11101045\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering11101045","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Remote Monitoring of Sympathovagal Imbalance During Sleep and Its Implications in Cardiovascular Risk Assessment: A Systematic Review.
Nocturnal sympathetic overdrive is an early indicator of cardiovascular (CV) disease, emphasizing the importance of reliable remote patient monitoring (RPM) for autonomic function during sleep. To be effective, RPM systems must be accurate, non-intrusive, and cost-effective. This review evaluates non-invasive technologies, metrics, and algorithms for tracking nocturnal autonomic nervous system (ANS) activity, assessing their CV relevance and feasibility for integration into RPM systems. A systematic search identified 18 relevant studies from an initial pool of 169 publications, with data extracted on study design, population characteristics, technology types, and CV implications. Modalities reviewed include electrodes (e.g., electroencephalography (EEG), electrocardiography (ECG), polysomnography (PSG)), optical sensors (e.g., photoplethysmography (PPG), peripheral arterial tone (PAT)), ballistocardiography (BCG), cameras, radars, and accelerometers. Heart rate variability (HRV) and blood pressure (BP) emerged as the most promising metrics for RPM, offering a comprehensive view of ANS function and vascular health during sleep. While electrodes provide precise HRV data, they remain intrusive, whereas optical sensors such as PPG demonstrate potential for multimodal monitoring, including HRV, SpO2, and estimates of arterial stiffness and BP. Non-intrusive methods like BCG and cameras are promising for heart and respiratory rate estimation, but less suitable for continuous HRV monitoring. In conclusion, HRV and BP are the most viable metrics for RPM, with PPG-based systems offering significant promise for non-intrusive, continuous monitoring of multiple modalities. Further research is needed to enhance accuracy, feasibility, and validation against direct measures of autonomic function, such as microneurography.
期刊介绍:
Aims
Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal:
● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings.
● Manuscripts regarding research proposals and research ideas will be particularly welcomed.
● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds.
Scope
● Bionics and biological cybernetics: implantology; bio–abio interfaces
● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices
● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc.
● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology
● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering
● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation
● Translational bioengineering