Marina Repkova , Oleg Mazurkov , Ekaterina Filippova , Maria Protsenko , Natalia Mazurkova , Maria Meschaninova , Asya Levina , Valentina Zarytova
{"title":"用氨基丙基硅烷醇纳米颗粒递送的 siRNA 分子的修饰对抑制细胞培养中的 A/H5N1 病毒的影响。","authors":"Marina Repkova , Oleg Mazurkov , Ekaterina Filippova , Maria Protsenko , Natalia Mazurkova , Maria Meschaninova , Asya Levina , Valentina Zarytova","doi":"10.1016/j.bbagen.2024.130727","DOIUrl":null,"url":null,"abstract":"<div><div>The application of siRNAs as antiviral agents is limited by several obstacles including their poor penetration into cells and instability in biological media. To overcome these problems, we used non-agglomerated aminopropylsilanol nanoparticles (NP) to deliver siRNA into cells. All studied siRNAs had identical nucleoside sequences comprising phosphodiester or phosphorothioate (PS) internucleotide groups and the 2’-OMe and/or 2’-F groups in nucleoside units at different positions of RNA. The siRNA molecules were attached to NP, thus forming the NP-siRNA nanocomplexes. We studied the effect of siRNA modification in the nanocomplexes on suppressing the highly pathogenic influenza A/H5N1 virus replication. The results demonstrated that all siRNA-containing nanocomplexes inhibited the replication of the A/H5N1 virus by 1–3 orders of magnitude. The nanocomplexes containing partially modified siRNAs exhibited the most pronounced inhibition with an efficacy of 900-fold. This result was achieved by using siRNA consisting of the canonical 19-bp RNA duplex with the 3′-dTdT dangling ends, with the antisense strand in this duplex being protected from endonucleases (one U<sup>Me</sup>A site within the strand). The additional modifications of siRNA reduce their antiviral activity. Promising sense strands for loading into the RISC complex are likely to be phosphodiester sequences that contain dTdT at the 3′ end (such as S<sub>4</sub>) to be protected against exonucleases. The sense strands of this type can probably be the most suitable for designing siRNAs as therapeutic agents. The proposed NP-siRNA nanocomplexes that consisted of low toxic and non-agglomerated aminopropylsilanol nanoparticles and siRNA molecules could be hopeful agents for gene silencing.</div></div>","PeriodicalId":8800,"journal":{"name":"Biochimica et biophysica acta. General subjects","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of modification of siRNA molecules delivered with aminopropylsilanol nanoparticles on suppression of A/H5N1 virus in cell culture\",\"authors\":\"Marina Repkova , Oleg Mazurkov , Ekaterina Filippova , Maria Protsenko , Natalia Mazurkova , Maria Meschaninova , Asya Levina , Valentina Zarytova\",\"doi\":\"10.1016/j.bbagen.2024.130727\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The application of siRNAs as antiviral agents is limited by several obstacles including their poor penetration into cells and instability in biological media. To overcome these problems, we used non-agglomerated aminopropylsilanol nanoparticles (NP) to deliver siRNA into cells. All studied siRNAs had identical nucleoside sequences comprising phosphodiester or phosphorothioate (PS) internucleotide groups and the 2’-OMe and/or 2’-F groups in nucleoside units at different positions of RNA. The siRNA molecules were attached to NP, thus forming the NP-siRNA nanocomplexes. We studied the effect of siRNA modification in the nanocomplexes on suppressing the highly pathogenic influenza A/H5N1 virus replication. The results demonstrated that all siRNA-containing nanocomplexes inhibited the replication of the A/H5N1 virus by 1–3 orders of magnitude. The nanocomplexes containing partially modified siRNAs exhibited the most pronounced inhibition with an efficacy of 900-fold. This result was achieved by using siRNA consisting of the canonical 19-bp RNA duplex with the 3′-dTdT dangling ends, with the antisense strand in this duplex being protected from endonucleases (one U<sup>Me</sup>A site within the strand). The additional modifications of siRNA reduce their antiviral activity. Promising sense strands for loading into the RISC complex are likely to be phosphodiester sequences that contain dTdT at the 3′ end (such as S<sub>4</sub>) to be protected against exonucleases. The sense strands of this type can probably be the most suitable for designing siRNAs as therapeutic agents. The proposed NP-siRNA nanocomplexes that consisted of low toxic and non-agglomerated aminopropylsilanol nanoparticles and siRNA molecules could be hopeful agents for gene silencing.</div></div>\",\"PeriodicalId\":8800,\"journal\":{\"name\":\"Biochimica et biophysica acta. General subjects\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochimica et biophysica acta. General subjects\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304416524001703\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et biophysica acta. General subjects","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304416524001703","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Effect of modification of siRNA molecules delivered with aminopropylsilanol nanoparticles on suppression of A/H5N1 virus in cell culture
The application of siRNAs as antiviral agents is limited by several obstacles including their poor penetration into cells and instability in biological media. To overcome these problems, we used non-agglomerated aminopropylsilanol nanoparticles (NP) to deliver siRNA into cells. All studied siRNAs had identical nucleoside sequences comprising phosphodiester or phosphorothioate (PS) internucleotide groups and the 2’-OMe and/or 2’-F groups in nucleoside units at different positions of RNA. The siRNA molecules were attached to NP, thus forming the NP-siRNA nanocomplexes. We studied the effect of siRNA modification in the nanocomplexes on suppressing the highly pathogenic influenza A/H5N1 virus replication. The results demonstrated that all siRNA-containing nanocomplexes inhibited the replication of the A/H5N1 virus by 1–3 orders of magnitude. The nanocomplexes containing partially modified siRNAs exhibited the most pronounced inhibition with an efficacy of 900-fold. This result was achieved by using siRNA consisting of the canonical 19-bp RNA duplex with the 3′-dTdT dangling ends, with the antisense strand in this duplex being protected from endonucleases (one UMeA site within the strand). The additional modifications of siRNA reduce their antiviral activity. Promising sense strands for loading into the RISC complex are likely to be phosphodiester sequences that contain dTdT at the 3′ end (such as S4) to be protected against exonucleases. The sense strands of this type can probably be the most suitable for designing siRNAs as therapeutic agents. The proposed NP-siRNA nanocomplexes that consisted of low toxic and non-agglomerated aminopropylsilanol nanoparticles and siRNA molecules could be hopeful agents for gene silencing.
期刊介绍:
BBA General Subjects accepts for submission either original, hypothesis-driven studies or reviews covering subjects in biochemistry and biophysics that are considered to have general interest for a wide audience. Manuscripts with interdisciplinary approaches are especially encouraged.