Yuan Ning , Ping Chen , Zhengnan Shen , Xing Liu , Huan Gu
{"title":"透明质酸包裹的泽因纳米粒子介导的白藜芦醇疗法可减少顺铂相关的肾毒性。","authors":"Yuan Ning , Ping Chen , Zhengnan Shen , Xing Liu , Huan Gu","doi":"10.1016/j.bbrc.2024.150873","DOIUrl":null,"url":null,"abstract":"<div><div>Cisplatin (CDDP) is commonly used as an anticancer drug in clinical practice, but severe nephrotoxicity restricts it from exerting anticancer effects. Natural drugs, such as resveratrol, can alleviate the side effects of cisplatin, but their low solubility and gastrointestinal effects prevent them from working. Herein, we developed nanoparticles for kidney injury consisting of a biocompatible material, zein, as a carrier. HA-Zein/Res NPs were fabricated using low-molecular-weight hyaluronic acid coatings. This preparation is non-cytotoxic to renal tubular epithelial cells and can be used with confidence. Low-molecular-weight hyaluronic acid has inflammation-targeting properties and CDDP damage causes renal inflammation. Owing to this property of the low-molecular-weight hyaluronic acid coating, in vivo imaging experiments in mice demonstrated that the HA-Zein/Res NPs enabled more nanoparticles to accumulate in the renal sites affected by inflammation. Efficient resveratrol delivery alleviated kidney injury, and experiments demonstrated that HA-Zein/Res NPs could treat kidney injury while reducing the serum creatinine and urea nitrogen levels in mice. Collectively, these results indicated that this nanomaterial is a promising agent for reducing the clinical nephrotoxicity of cisplatin.</div></div>","PeriodicalId":8779,"journal":{"name":"Biochemical and biophysical research communications","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hyaluronic acid-coated zein nanoparticle-mediated resveratrol therapy for the reduction of cisplatin-associated nephrotoxicity\",\"authors\":\"Yuan Ning , Ping Chen , Zhengnan Shen , Xing Liu , Huan Gu\",\"doi\":\"10.1016/j.bbrc.2024.150873\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Cisplatin (CDDP) is commonly used as an anticancer drug in clinical practice, but severe nephrotoxicity restricts it from exerting anticancer effects. Natural drugs, such as resveratrol, can alleviate the side effects of cisplatin, but their low solubility and gastrointestinal effects prevent them from working. Herein, we developed nanoparticles for kidney injury consisting of a biocompatible material, zein, as a carrier. HA-Zein/Res NPs were fabricated using low-molecular-weight hyaluronic acid coatings. This preparation is non-cytotoxic to renal tubular epithelial cells and can be used with confidence. Low-molecular-weight hyaluronic acid has inflammation-targeting properties and CDDP damage causes renal inflammation. Owing to this property of the low-molecular-weight hyaluronic acid coating, in vivo imaging experiments in mice demonstrated that the HA-Zein/Res NPs enabled more nanoparticles to accumulate in the renal sites affected by inflammation. Efficient resveratrol delivery alleviated kidney injury, and experiments demonstrated that HA-Zein/Res NPs could treat kidney injury while reducing the serum creatinine and urea nitrogen levels in mice. Collectively, these results indicated that this nanomaterial is a promising agent for reducing the clinical nephrotoxicity of cisplatin.</div></div>\",\"PeriodicalId\":8779,\"journal\":{\"name\":\"Biochemical and biophysical research communications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochemical and biophysical research communications\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0006291X24014098\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical and biophysical research communications","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0006291X24014098","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Hyaluronic acid-coated zein nanoparticle-mediated resveratrol therapy for the reduction of cisplatin-associated nephrotoxicity
Cisplatin (CDDP) is commonly used as an anticancer drug in clinical practice, but severe nephrotoxicity restricts it from exerting anticancer effects. Natural drugs, such as resveratrol, can alleviate the side effects of cisplatin, but their low solubility and gastrointestinal effects prevent them from working. Herein, we developed nanoparticles for kidney injury consisting of a biocompatible material, zein, as a carrier. HA-Zein/Res NPs were fabricated using low-molecular-weight hyaluronic acid coatings. This preparation is non-cytotoxic to renal tubular epithelial cells and can be used with confidence. Low-molecular-weight hyaluronic acid has inflammation-targeting properties and CDDP damage causes renal inflammation. Owing to this property of the low-molecular-weight hyaluronic acid coating, in vivo imaging experiments in mice demonstrated that the HA-Zein/Res NPs enabled more nanoparticles to accumulate in the renal sites affected by inflammation. Efficient resveratrol delivery alleviated kidney injury, and experiments demonstrated that HA-Zein/Res NPs could treat kidney injury while reducing the serum creatinine and urea nitrogen levels in mice. Collectively, these results indicated that this nanomaterial is a promising agent for reducing the clinical nephrotoxicity of cisplatin.
期刊介绍:
Biochemical and Biophysical Research Communications is the premier international journal devoted to the very rapid dissemination of timely and significant experimental results in diverse fields of biological research. The development of the "Breakthroughs and Views" section brings the minireview format to the journal, and issues often contain collections of special interest manuscripts. BBRC is published weekly (52 issues/year).Research Areas now include: Biochemistry; biophysics; cell biology; developmental biology; immunology
; molecular biology; neurobiology; plant biology and proteomics