Mahmoud A.A. Ibrahim , Alaa M.A. Hassan , Gamal A.H. Mekhemer , Peter A. Sidhom , Mohamed A. El-Tayeb , Ashraf M.M. Abdelbacki , Shahzeb Khan , Mahmoud E.S. Soliman , Alaa H.M. Abdelrahman
{"title":"探索海洋天然产物以确定作为 EBNA1 抑制剂的候选物质:分子对接、分子动力学和 DFT 计算的启示","authors":"Mahmoud A.A. Ibrahim , Alaa M.A. Hassan , Gamal A.H. Mekhemer , Peter A. Sidhom , Mohamed A. El-Tayeb , Ashraf M.M. Abdelbacki , Shahzeb Khan , Mahmoud E.S. Soliman , Alaa H.M. Abdelrahman","doi":"10.1016/j.bbrc.2024.150856","DOIUrl":null,"url":null,"abstract":"<div><div>Epstein-Barr virus (EBV), namely a DNA neoplasm virus, is liable for over 1 % of malignant neoplasms involving Hodgkin's and Burkitt's lymphoma as well as ventral cancer. Despite the crucial role of EBV in carcinoma evolution, no treatment has been discovered yet against EBV. Epstein-Barr nuclear antigen 1 (EBNA1), the EBV-encoded latent protein, is produced in all EBV-linked neoplasms and is the only latent protein in these cancer types. EBNA1 protein has multiple roles in the upkeep, reproduction, and EBV genome separation and can thus act as an attractive therapeutic target for treating EBV-related malignancies. In the past few decades, attempts have been made to develop specialized EBNA1 inhibitors to reduce EBNA1 expression or obstruct EBNA1-relied processes, but none has been approved yet. Marine natural products (MNPs) have garnered significant interest as potential sources of antiviral drug candidates. In seeking potent drug candidates to inhibit EBV reproduction, an MNP database containing >14,000 compounds was mined to hunt putative EBNA1 inhibitors using docking computations and molecular dynamics simulations (MDS). On the basis of binding energy (Δ<em>G</em><sub>binding</sub>) estimations over 200 ns MDS, UMHMNP351444649 and UMHMNP134128179 revealed a greater binding affinity towards EBNA1 compared to KWG, with Δ<em>G</em><sub>binding</sub> values of −35.6, −33.3, and −32.4 kcal/mol, respectively. Structural and energetical investigations of UMHMNP351444649 and UMHMNP134128179 complexed with EBNA1 were inspected, unveiling the great constancy of these inhibitors within the EBNA1 binding site. Moreover, the identified MNPs demonstrated favorable physicochemical and medicinal chemistry characteristics. Finally, density functional theory calculations were executed, and the results assured the outcomes obtained from docking computations and MDS. These findings proposed UMHMNP351444649 and UMHMNP134128179 as potential anti-EBV drug candidates that warrant further <em>in-vitro</em> and <em>in-vivo</em> assays.</div></div>","PeriodicalId":8779,"journal":{"name":"Biochemical and biophysical research communications","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring marine natural products for identifying putative candidates as EBNA1 inhibitors: An insight from molecular docking, molecular dynamics, and DFT computations\",\"authors\":\"Mahmoud A.A. Ibrahim , Alaa M.A. Hassan , Gamal A.H. Mekhemer , Peter A. Sidhom , Mohamed A. El-Tayeb , Ashraf M.M. Abdelbacki , Shahzeb Khan , Mahmoud E.S. Soliman , Alaa H.M. Abdelrahman\",\"doi\":\"10.1016/j.bbrc.2024.150856\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Epstein-Barr virus (EBV), namely a DNA neoplasm virus, is liable for over 1 % of malignant neoplasms involving Hodgkin's and Burkitt's lymphoma as well as ventral cancer. Despite the crucial role of EBV in carcinoma evolution, no treatment has been discovered yet against EBV. Epstein-Barr nuclear antigen 1 (EBNA1), the EBV-encoded latent protein, is produced in all EBV-linked neoplasms and is the only latent protein in these cancer types. EBNA1 protein has multiple roles in the upkeep, reproduction, and EBV genome separation and can thus act as an attractive therapeutic target for treating EBV-related malignancies. In the past few decades, attempts have been made to develop specialized EBNA1 inhibitors to reduce EBNA1 expression or obstruct EBNA1-relied processes, but none has been approved yet. Marine natural products (MNPs) have garnered significant interest as potential sources of antiviral drug candidates. In seeking potent drug candidates to inhibit EBV reproduction, an MNP database containing >14,000 compounds was mined to hunt putative EBNA1 inhibitors using docking computations and molecular dynamics simulations (MDS). On the basis of binding energy (Δ<em>G</em><sub>binding</sub>) estimations over 200 ns MDS, UMHMNP351444649 and UMHMNP134128179 revealed a greater binding affinity towards EBNA1 compared to KWG, with Δ<em>G</em><sub>binding</sub> values of −35.6, −33.3, and −32.4 kcal/mol, respectively. Structural and energetical investigations of UMHMNP351444649 and UMHMNP134128179 complexed with EBNA1 were inspected, unveiling the great constancy of these inhibitors within the EBNA1 binding site. Moreover, the identified MNPs demonstrated favorable physicochemical and medicinal chemistry characteristics. Finally, density functional theory calculations were executed, and the results assured the outcomes obtained from docking computations and MDS. These findings proposed UMHMNP351444649 and UMHMNP134128179 as potential anti-EBV drug candidates that warrant further <em>in-vitro</em> and <em>in-vivo</em> assays.</div></div>\",\"PeriodicalId\":8779,\"journal\":{\"name\":\"Biochemical and biophysical research communications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochemical and biophysical research communications\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0006291X24013925\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical and biophysical research communications","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0006291X24013925","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Exploring marine natural products for identifying putative candidates as EBNA1 inhibitors: An insight from molecular docking, molecular dynamics, and DFT computations
Epstein-Barr virus (EBV), namely a DNA neoplasm virus, is liable for over 1 % of malignant neoplasms involving Hodgkin's and Burkitt's lymphoma as well as ventral cancer. Despite the crucial role of EBV in carcinoma evolution, no treatment has been discovered yet against EBV. Epstein-Barr nuclear antigen 1 (EBNA1), the EBV-encoded latent protein, is produced in all EBV-linked neoplasms and is the only latent protein in these cancer types. EBNA1 protein has multiple roles in the upkeep, reproduction, and EBV genome separation and can thus act as an attractive therapeutic target for treating EBV-related malignancies. In the past few decades, attempts have been made to develop specialized EBNA1 inhibitors to reduce EBNA1 expression or obstruct EBNA1-relied processes, but none has been approved yet. Marine natural products (MNPs) have garnered significant interest as potential sources of antiviral drug candidates. In seeking potent drug candidates to inhibit EBV reproduction, an MNP database containing >14,000 compounds was mined to hunt putative EBNA1 inhibitors using docking computations and molecular dynamics simulations (MDS). On the basis of binding energy (ΔGbinding) estimations over 200 ns MDS, UMHMNP351444649 and UMHMNP134128179 revealed a greater binding affinity towards EBNA1 compared to KWG, with ΔGbinding values of −35.6, −33.3, and −32.4 kcal/mol, respectively. Structural and energetical investigations of UMHMNP351444649 and UMHMNP134128179 complexed with EBNA1 were inspected, unveiling the great constancy of these inhibitors within the EBNA1 binding site. Moreover, the identified MNPs demonstrated favorable physicochemical and medicinal chemistry characteristics. Finally, density functional theory calculations were executed, and the results assured the outcomes obtained from docking computations and MDS. These findings proposed UMHMNP351444649 and UMHMNP134128179 as potential anti-EBV drug candidates that warrant further in-vitro and in-vivo assays.
期刊介绍:
Biochemical and Biophysical Research Communications is the premier international journal devoted to the very rapid dissemination of timely and significant experimental results in diverse fields of biological research. The development of the "Breakthroughs and Views" section brings the minireview format to the journal, and issues often contain collections of special interest manuscripts. BBRC is published weekly (52 issues/year).Research Areas now include: Biochemistry; biophysics; cell biology; developmental biology; immunology
; molecular biology; neurobiology; plant biology and proteomics