Smrutipragnya Samal, Rajesh Kumar Meher, Pratyush Kumar Das, Santosh Kumar Swain, Debasmita Dubey, Mohd Shahnawaz Khan, Bigyan Ranjan Jali
{"title":"探讨紫檀树皮提取物合成的金纳米粒子对口腔鳞状细胞癌的抗癌和抗氧化潜力","authors":"Smrutipragnya Samal, Rajesh Kumar Meher, Pratyush Kumar Das, Santosh Kumar Swain, Debasmita Dubey, Mohd Shahnawaz Khan, Bigyan Ranjan Jali","doi":"10.1080/21691401.2024.2416951","DOIUrl":null,"url":null,"abstract":"<p><p>Oral squamous cell carcinoma (OSCC) is a disease of significant concern with higher mortality rates. Conventional treatment approaches have several drawbacks, leading to the opening of new research avenues in the field of nanoparticle-based cancer therapeutics. The study aimed at the synthesis of gold nanoparticles (Pm-AuNPs) from the aqueous bark extract of <i>Pterocarpus marsupium</i>, followed by its characterization and <i>in vitro</i> anticancer evaluation against OSCC. The synthesized Pm-AuNPs were characterized using UV-visible spectroscopy, particle size analyser, zeta potential, FTIR and SEM techniques. The anticancer potential of the Pm-AuNPs was evaluated against OSCC cell lines (SCC29b, SSC154 and OECM-1) through <i>in vitro</i> assays. The IC<sub>50</sub> value was found to be 25 ± 1.2, 45 ± 1.5 and 75 ± 2.1 µg/mL for the three OSCC cell lines, elucidating Pm-AuNPs cytotoxic effects and mechanism of action. Intracellular ROS and SOX detection, mitochondrial transmembrane potential analysis and apoptosis detection were used to confirm the activity of Pm-AuNPs against OSCC. Acute toxicity studies on Wistar rats confirmed the non-toxic nature of the Pm-AuNPs at a higher dose concentration up to 2000 mg/kg body weight. The findings underscore Pm-AuNPs as promising candidates for future anticancer therapeutics, providing insights into their mechanism of action and therapeutic efficacy against OSCC.</p>","PeriodicalId":8736,"journal":{"name":"Artificial Cells, Nanomedicine, and Biotechnology","volume":"52 1","pages":"512-528"},"PeriodicalIF":4.5000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring the anticancer and antioxidant potential of gold nanoparticles synthesized from <i>Pterocarpus marsupium</i> bark extract against oral squamous cell carcinoma.\",\"authors\":\"Smrutipragnya Samal, Rajesh Kumar Meher, Pratyush Kumar Das, Santosh Kumar Swain, Debasmita Dubey, Mohd Shahnawaz Khan, Bigyan Ranjan Jali\",\"doi\":\"10.1080/21691401.2024.2416951\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Oral squamous cell carcinoma (OSCC) is a disease of significant concern with higher mortality rates. Conventional treatment approaches have several drawbacks, leading to the opening of new research avenues in the field of nanoparticle-based cancer therapeutics. The study aimed at the synthesis of gold nanoparticles (Pm-AuNPs) from the aqueous bark extract of <i>Pterocarpus marsupium</i>, followed by its characterization and <i>in vitro</i> anticancer evaluation against OSCC. The synthesized Pm-AuNPs were characterized using UV-visible spectroscopy, particle size analyser, zeta potential, FTIR and SEM techniques. The anticancer potential of the Pm-AuNPs was evaluated against OSCC cell lines (SCC29b, SSC154 and OECM-1) through <i>in vitro</i> assays. The IC<sub>50</sub> value was found to be 25 ± 1.2, 45 ± 1.5 and 75 ± 2.1 µg/mL for the three OSCC cell lines, elucidating Pm-AuNPs cytotoxic effects and mechanism of action. Intracellular ROS and SOX detection, mitochondrial transmembrane potential analysis and apoptosis detection were used to confirm the activity of Pm-AuNPs against OSCC. Acute toxicity studies on Wistar rats confirmed the non-toxic nature of the Pm-AuNPs at a higher dose concentration up to 2000 mg/kg body weight. The findings underscore Pm-AuNPs as promising candidates for future anticancer therapeutics, providing insights into their mechanism of action and therapeutic efficacy against OSCC.</p>\",\"PeriodicalId\":8736,\"journal\":{\"name\":\"Artificial Cells, Nanomedicine, and Biotechnology\",\"volume\":\"52 1\",\"pages\":\"512-528\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial Cells, Nanomedicine, and Biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/21691401.2024.2416951\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/25 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Cells, Nanomedicine, and Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/21691401.2024.2416951","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/25 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Exploring the anticancer and antioxidant potential of gold nanoparticles synthesized from Pterocarpus marsupium bark extract against oral squamous cell carcinoma.
Oral squamous cell carcinoma (OSCC) is a disease of significant concern with higher mortality rates. Conventional treatment approaches have several drawbacks, leading to the opening of new research avenues in the field of nanoparticle-based cancer therapeutics. The study aimed at the synthesis of gold nanoparticles (Pm-AuNPs) from the aqueous bark extract of Pterocarpus marsupium, followed by its characterization and in vitro anticancer evaluation against OSCC. The synthesized Pm-AuNPs were characterized using UV-visible spectroscopy, particle size analyser, zeta potential, FTIR and SEM techniques. The anticancer potential of the Pm-AuNPs was evaluated against OSCC cell lines (SCC29b, SSC154 and OECM-1) through in vitro assays. The IC50 value was found to be 25 ± 1.2, 45 ± 1.5 and 75 ± 2.1 µg/mL for the three OSCC cell lines, elucidating Pm-AuNPs cytotoxic effects and mechanism of action. Intracellular ROS and SOX detection, mitochondrial transmembrane potential analysis and apoptosis detection were used to confirm the activity of Pm-AuNPs against OSCC. Acute toxicity studies on Wistar rats confirmed the non-toxic nature of the Pm-AuNPs at a higher dose concentration up to 2000 mg/kg body weight. The findings underscore Pm-AuNPs as promising candidates for future anticancer therapeutics, providing insights into their mechanism of action and therapeutic efficacy against OSCC.
期刊介绍:
Artificial Cells, Nanomedicine and Biotechnology covers the frontiers of interdisciplinary research and application, combining artificial cells, nanotechnology, nanobiotechnology, biotechnology, molecular biology, bioencapsulation, novel carriers, stem cells and tissue engineering. Emphasis is on basic research, applied research, and clinical and industrial applications of the following topics:artificial cellsblood substitutes and oxygen therapeuticsnanotechnology, nanobiotecnology, nanomedicinetissue engineeringstem cellsbioencapsulationmicroencapsulation and nanoencapsulationmicroparticles and nanoparticlesliposomescell therapy and gene therapyenzyme therapydrug delivery systemsbiodegradable and biocompatible polymers for scaffolds and carriersbiosensorsimmobilized enzymes and their usesother biotechnological and nanobiotechnological approachesRapid progress in modern research cannot be carried out in isolation and is based on the combined use of the different novel approaches. The interdisciplinary research involving novel approaches, as discussed above, has revolutionized this field resulting in rapid developments. This journal serves to bring these different, modern and futuristic approaches together for the academic, clinical and industrial communities to allow for even greater developments of this highly interdisciplinary area.