{"title":"过去五年药物与目标相互作用的研究进展。","authors":"Yun Zuo, Xubin Wu, Fei Ge, Hongjin Yan, Sirui Fei, Jingwen Liang, Zhaohong Deng","doi":"10.1016/j.ab.2024.115691","DOIUrl":null,"url":null,"abstract":"<div><div>The identification of Drug-Target Interaction (DTI) is an important step in drug discovery and drug repositioning, and has high application value in multiple fields such as drug discovery, drug repositioning, and repurposing. However, the high cost of experimental validation limits its identification. In contrast, computation-based approaches are both economical and efficient. This review first synthesizes existing chemical genomic approaches, provides a comprehensive summary of prevalent databases for predicting DTIs, and categorizes the feature encodings from recent years. This is followed by an overview and brief description of the methods currently in use for predicting DTIs. The strengths and weaknesses of newly proposed prediction methods in the last five years (2020–2024), including those based on network representation learning and graph neural networks, are then discussed in detail, evaluating the performance of the different methods on a wide range of datasets. Finally, this review explores potential directions for future DTI research, emphasizing how to improve prediction accuracy and efficiency by combining big data and emerging computing technologies.</div></div>","PeriodicalId":7830,"journal":{"name":"Analytical biochemistry","volume":"697 ","pages":"Article 115691"},"PeriodicalIF":2.6000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research progress on Drug-Target Interactions in the last five years\",\"authors\":\"Yun Zuo, Xubin Wu, Fei Ge, Hongjin Yan, Sirui Fei, Jingwen Liang, Zhaohong Deng\",\"doi\":\"10.1016/j.ab.2024.115691\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The identification of Drug-Target Interaction (DTI) is an important step in drug discovery and drug repositioning, and has high application value in multiple fields such as drug discovery, drug repositioning, and repurposing. However, the high cost of experimental validation limits its identification. In contrast, computation-based approaches are both economical and efficient. This review first synthesizes existing chemical genomic approaches, provides a comprehensive summary of prevalent databases for predicting DTIs, and categorizes the feature encodings from recent years. This is followed by an overview and brief description of the methods currently in use for predicting DTIs. The strengths and weaknesses of newly proposed prediction methods in the last five years (2020–2024), including those based on network representation learning and graph neural networks, are then discussed in detail, evaluating the performance of the different methods on a wide range of datasets. Finally, this review explores potential directions for future DTI research, emphasizing how to improve prediction accuracy and efficiency by combining big data and emerging computing technologies.</div></div>\",\"PeriodicalId\":7830,\"journal\":{\"name\":\"Analytical biochemistry\",\"volume\":\"697 \",\"pages\":\"Article 115691\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analytical biochemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0003269724002355\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical biochemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0003269724002355","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Research progress on Drug-Target Interactions in the last five years
The identification of Drug-Target Interaction (DTI) is an important step in drug discovery and drug repositioning, and has high application value in multiple fields such as drug discovery, drug repositioning, and repurposing. However, the high cost of experimental validation limits its identification. In contrast, computation-based approaches are both economical and efficient. This review first synthesizes existing chemical genomic approaches, provides a comprehensive summary of prevalent databases for predicting DTIs, and categorizes the feature encodings from recent years. This is followed by an overview and brief description of the methods currently in use for predicting DTIs. The strengths and weaknesses of newly proposed prediction methods in the last five years (2020–2024), including those based on network representation learning and graph neural networks, are then discussed in detail, evaluating the performance of the different methods on a wide range of datasets. Finally, this review explores potential directions for future DTI research, emphasizing how to improve prediction accuracy and efficiency by combining big data and emerging computing technologies.
期刊介绍:
The journal''s title Analytical Biochemistry: Methods in the Biological Sciences declares its broad scope: methods for the basic biological sciences that include biochemistry, molecular genetics, cell biology, proteomics, immunology, bioinformatics and wherever the frontiers of research take the field.
The emphasis is on methods from the strictly analytical to the more preparative that would include novel approaches to protein purification as well as improvements in cell and organ culture. The actual techniques are equally inclusive ranging from aptamers to zymology.
The journal has been particularly active in:
-Analytical techniques for biological molecules-
Aptamer selection and utilization-
Biosensors-
Chromatography-
Cloning, sequencing and mutagenesis-
Electrochemical methods-
Electrophoresis-
Enzyme characterization methods-
Immunological approaches-
Mass spectrometry of proteins and nucleic acids-
Metabolomics-
Nano level techniques-
Optical spectroscopy in all its forms.
The journal is reluctant to include most drug and strictly clinical studies as there are more suitable publication platforms for these types of papers.