Jodie L Koep, Bert Bond, Chloe E Taylor, Alan R Barker, Stefanie L Ruediger, Faith K Pizzey, Jeff S Coombes, Tom G Bailey
{"title":"等长握手运动时年龄、性别和运动强度对脑动脉血流动力学的影响。","authors":"Jodie L Koep, Bert Bond, Chloe E Taylor, Alan R Barker, Stefanie L Ruediger, Faith K Pizzey, Jeff S Coombes, Tom G Bailey","doi":"10.1152/ajpregu.00014.2024","DOIUrl":null,"url":null,"abstract":"<p><p>Age and sex may alter the cerebral blood flow (CBF) responses to acute isometric exercise, via associated elevations in mean arterial pressure (MAP) and sympathetic activation. Our aim was to determine the relationships between age, sex and exercise intensity on cerebrovascular responses to isometric handgrip exercise. In 78 healthy adults (18-80 years, N=42 female), cerebrovascular responses were assessed during two minute isometric exercise bouts at three intensities (15, 30, 45% maximal voluntary contraction). Intracranial responses of the middle cerebral artery (MCA) and posterior cerebral artery (PCA) velocity (v) were measured using transcranial Doppler ultrasound. Extracranial responses of the internal carotid artery (ICA) and vertebral artery (VA) were assessed using Duplex ultrasound. Cardiopulmonary haemodynamic and neural parameters were measured throughout, including muscle sympathetic nerve activity, end-tidal carbon dioxide, and MAP. There were significant positive relationships between exercise intensity and the cerebral responses of the MCAv (P<0.001) and PCAv (P=0.005). There were no effects of intensity on ICA and VA responses (P>0.05), despite intensity-dependent increases in MAP (P<0.001). The increased MCAv response to exercise was blunted with advancing age (P=0.01) with no influence of sex (P=0.86). The present study provides data on age, sex and intensity specific relationships with intracranial and extracranial cerebrovascular responses to isometric exercise. Despite similar ICA, VA, and PCA responses, MCAv responses were attenuated with advancing age during handgrip exercise with no sex dependent influence. Further, intracranial responses were intensity dependent, whereas extracranial blood flow, shear-stress and velocity responses were similarly increased at all intensities during handgrip exercise.</p>","PeriodicalId":7630,"journal":{"name":"American journal of physiology. Regulatory, integrative and comparative physiology","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The relationships between age, sex and exercise intensity on cerebral artery haemodynamics during isometric handgrip exercise.\",\"authors\":\"Jodie L Koep, Bert Bond, Chloe E Taylor, Alan R Barker, Stefanie L Ruediger, Faith K Pizzey, Jeff S Coombes, Tom G Bailey\",\"doi\":\"10.1152/ajpregu.00014.2024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Age and sex may alter the cerebral blood flow (CBF) responses to acute isometric exercise, via associated elevations in mean arterial pressure (MAP) and sympathetic activation. Our aim was to determine the relationships between age, sex and exercise intensity on cerebrovascular responses to isometric handgrip exercise. In 78 healthy adults (18-80 years, N=42 female), cerebrovascular responses were assessed during two minute isometric exercise bouts at three intensities (15, 30, 45% maximal voluntary contraction). Intracranial responses of the middle cerebral artery (MCA) and posterior cerebral artery (PCA) velocity (v) were measured using transcranial Doppler ultrasound. Extracranial responses of the internal carotid artery (ICA) and vertebral artery (VA) were assessed using Duplex ultrasound. Cardiopulmonary haemodynamic and neural parameters were measured throughout, including muscle sympathetic nerve activity, end-tidal carbon dioxide, and MAP. There were significant positive relationships between exercise intensity and the cerebral responses of the MCAv (P<0.001) and PCAv (P=0.005). There were no effects of intensity on ICA and VA responses (P>0.05), despite intensity-dependent increases in MAP (P<0.001). The increased MCAv response to exercise was blunted with advancing age (P=0.01) with no influence of sex (P=0.86). The present study provides data on age, sex and intensity specific relationships with intracranial and extracranial cerebrovascular responses to isometric exercise. Despite similar ICA, VA, and PCA responses, MCAv responses were attenuated with advancing age during handgrip exercise with no sex dependent influence. Further, intracranial responses were intensity dependent, whereas extracranial blood flow, shear-stress and velocity responses were similarly increased at all intensities during handgrip exercise.</p>\",\"PeriodicalId\":7630,\"journal\":{\"name\":\"American journal of physiology. Regulatory, integrative and comparative physiology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American journal of physiology. Regulatory, integrative and comparative physiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1152/ajpregu.00014.2024\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Regulatory, integrative and comparative physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/ajpregu.00014.2024","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
The relationships between age, sex and exercise intensity on cerebral artery haemodynamics during isometric handgrip exercise.
Age and sex may alter the cerebral blood flow (CBF) responses to acute isometric exercise, via associated elevations in mean arterial pressure (MAP) and sympathetic activation. Our aim was to determine the relationships between age, sex and exercise intensity on cerebrovascular responses to isometric handgrip exercise. In 78 healthy adults (18-80 years, N=42 female), cerebrovascular responses were assessed during two minute isometric exercise bouts at three intensities (15, 30, 45% maximal voluntary contraction). Intracranial responses of the middle cerebral artery (MCA) and posterior cerebral artery (PCA) velocity (v) were measured using transcranial Doppler ultrasound. Extracranial responses of the internal carotid artery (ICA) and vertebral artery (VA) were assessed using Duplex ultrasound. Cardiopulmonary haemodynamic and neural parameters were measured throughout, including muscle sympathetic nerve activity, end-tidal carbon dioxide, and MAP. There were significant positive relationships between exercise intensity and the cerebral responses of the MCAv (P<0.001) and PCAv (P=0.005). There were no effects of intensity on ICA and VA responses (P>0.05), despite intensity-dependent increases in MAP (P<0.001). The increased MCAv response to exercise was blunted with advancing age (P=0.01) with no influence of sex (P=0.86). The present study provides data on age, sex and intensity specific relationships with intracranial and extracranial cerebrovascular responses to isometric exercise. Despite similar ICA, VA, and PCA responses, MCAv responses were attenuated with advancing age during handgrip exercise with no sex dependent influence. Further, intracranial responses were intensity dependent, whereas extracranial blood flow, shear-stress and velocity responses were similarly increased at all intensities during handgrip exercise.
期刊介绍:
The American Journal of Physiology-Regulatory, Integrative and Comparative Physiology publishes original investigations that illuminate normal or abnormal regulation and integration of physiological mechanisms at all levels of biological organization, ranging from molecules to humans, including clinical investigations. Major areas of emphasis include regulation in genetically modified animals; model organisms; development and tissue plasticity; neurohumoral control of circulation and hypertension; local control of circulation; cardiac and renal integration; thirst and volume, electrolyte homeostasis; glucose homeostasis and energy balance; appetite and obesity; inflammation and cytokines; integrative physiology of pregnancy-parturition-lactation; and thermoregulation and adaptations to exercise and environmental stress.