{"title":"新型 CLTC-VMP1 融合基因对顺铂耐药骨肉瘤自噬调控和能量代谢的贡献","authors":"Zhiwei Tao, Pingan Zou, Zhengxu Yang, Tao Xiong, Zhi Deng, Qinchan Chen","doi":"10.1152/ajpcell.00302.2024","DOIUrl":null,"url":null,"abstract":"<p><p>Osteosarcoma (OS) is a highly malignant tumor, and chemotherapy resistance is a major challenge in the treatment of this disease. This study aims to explore the role of the CLTC-VMP1 gene fusion in the mechanism of chemotherapy resistance in OS and investigate its molecular mechanisms in mediating energy metabolism reprogramming by regulating autophagy and apoptosis balance. Using single-cell transcriptome analysis, the heterogeneity of OS cells and their correlation with resistance to platinum drugs were revealed. Cisplatin-resistant cell lines were established in human OS cell lines for subsequent experiments. Based on transcriptomic analysis, the importance of VMP1 in chemotherapy resistance was confirmed. Lentiviral vectors overexpressing or interfering with VMP1 were used, and it was observed that inhibiting VMP1 could reverse cisplatin resistance, promote cell apoptosis, and inhibit autophagy, as well as mitochondrial respiration and glycolysis. Furthermore, the presence of CLTC-VMP1 gene fusion was validated, and its ability to regulate autophagy and apoptosis balance, promote mitochondrial respiration, and glycolysis was demonstrated. Mouse model experiments further confirmed the promoting effect of CLTC-VMP1 on tumor growth and chemotherapy resistance. In summary, the CLTC-VMP1 gene fusion mediates energy metabolism reprogramming by regulating autophagy and apoptosis balance, which promotes chemotherapy resistance in OS.</p>","PeriodicalId":7585,"journal":{"name":"American journal of physiology. Cell physiology","volume":" ","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Contribution of the Novel CLTC-VMP1 Fusion Gene to Autophagy Regulation and Energy Metabolism in Cisplatin-Resistant Osteosarcoma.\",\"authors\":\"Zhiwei Tao, Pingan Zou, Zhengxu Yang, Tao Xiong, Zhi Deng, Qinchan Chen\",\"doi\":\"10.1152/ajpcell.00302.2024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Osteosarcoma (OS) is a highly malignant tumor, and chemotherapy resistance is a major challenge in the treatment of this disease. This study aims to explore the role of the CLTC-VMP1 gene fusion in the mechanism of chemotherapy resistance in OS and investigate its molecular mechanisms in mediating energy metabolism reprogramming by regulating autophagy and apoptosis balance. Using single-cell transcriptome analysis, the heterogeneity of OS cells and their correlation with resistance to platinum drugs were revealed. Cisplatin-resistant cell lines were established in human OS cell lines for subsequent experiments. Based on transcriptomic analysis, the importance of VMP1 in chemotherapy resistance was confirmed. Lentiviral vectors overexpressing or interfering with VMP1 were used, and it was observed that inhibiting VMP1 could reverse cisplatin resistance, promote cell apoptosis, and inhibit autophagy, as well as mitochondrial respiration and glycolysis. Furthermore, the presence of CLTC-VMP1 gene fusion was validated, and its ability to regulate autophagy and apoptosis balance, promote mitochondrial respiration, and glycolysis was demonstrated. Mouse model experiments further confirmed the promoting effect of CLTC-VMP1 on tumor growth and chemotherapy resistance. In summary, the CLTC-VMP1 gene fusion mediates energy metabolism reprogramming by regulating autophagy and apoptosis balance, which promotes chemotherapy resistance in OS.</p>\",\"PeriodicalId\":7585,\"journal\":{\"name\":\"American journal of physiology. Cell physiology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American journal of physiology. Cell physiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1152/ajpcell.00302.2024\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Cell physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1152/ajpcell.00302.2024","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
The Contribution of the Novel CLTC-VMP1 Fusion Gene to Autophagy Regulation and Energy Metabolism in Cisplatin-Resistant Osteosarcoma.
Osteosarcoma (OS) is a highly malignant tumor, and chemotherapy resistance is a major challenge in the treatment of this disease. This study aims to explore the role of the CLTC-VMP1 gene fusion in the mechanism of chemotherapy resistance in OS and investigate its molecular mechanisms in mediating energy metabolism reprogramming by regulating autophagy and apoptosis balance. Using single-cell transcriptome analysis, the heterogeneity of OS cells and their correlation with resistance to platinum drugs were revealed. Cisplatin-resistant cell lines were established in human OS cell lines for subsequent experiments. Based on transcriptomic analysis, the importance of VMP1 in chemotherapy resistance was confirmed. Lentiviral vectors overexpressing or interfering with VMP1 were used, and it was observed that inhibiting VMP1 could reverse cisplatin resistance, promote cell apoptosis, and inhibit autophagy, as well as mitochondrial respiration and glycolysis. Furthermore, the presence of CLTC-VMP1 gene fusion was validated, and its ability to regulate autophagy and apoptosis balance, promote mitochondrial respiration, and glycolysis was demonstrated. Mouse model experiments further confirmed the promoting effect of CLTC-VMP1 on tumor growth and chemotherapy resistance. In summary, the CLTC-VMP1 gene fusion mediates energy metabolism reprogramming by regulating autophagy and apoptosis balance, which promotes chemotherapy resistance in OS.
期刊介绍:
The American Journal of Physiology-Cell Physiology is dedicated to innovative approaches to the study of cell and molecular physiology. Contributions that use cellular and molecular approaches to shed light on mechanisms of physiological control at higher levels of organization also appear regularly. Manuscripts dealing with the structure and function of cell membranes, contractile systems, cellular organelles, and membrane channels, transporters, and pumps are encouraged. Studies dealing with integrated regulation of cellular function, including mechanisms of signal transduction, development, gene expression, cell-to-cell interactions, and the cell physiology of pathophysiological states, are also eagerly sought. Interdisciplinary studies that apply the approaches of biochemistry, biophysics, molecular biology, morphology, and immunology to the determination of new principles in cell physiology are especially welcome.