Daniel Stocker, Stefanie Hectors, Brett Marinelli, Guillermo Carbonell, Octavia Bane, Miriam Hulkower, Paul Kennedy, Weiping Ma, Sara Lewis, Edward Kim, Pei Wang, Bachir Taouli
{"title":"利用基于磁共振成像的机器学习方法预测肝细胞癌对放射分段切除术的反应。","authors":"Daniel Stocker, Stefanie Hectors, Brett Marinelli, Guillermo Carbonell, Octavia Bane, Miriam Hulkower, Paul Kennedy, Weiping Ma, Sara Lewis, Edward Kim, Pei Wang, Bachir Taouli","doi":"10.1007/s00261-024-04606-z","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>To evaluate the value of pre-treatment MRI-based radiomics in patients with hepatocellular carcinoma (HCC) for the prediction of response to Yttrium 90 radiation segmentectomy.</p><p><strong>Methods: </strong>This retrospective study included 154 patients (38 female; mean age 66.8 years) who underwent contrast-enhanced MRI prior to radiation segmentectomy. Radiomics features were manually extracted on volumes of interest on post-contrast T1-weighted images at the portal venous phase (PVP). Tumor-based response assessment was evaluated 6 months post-treatment using mRECIST. A logistic regression model was used to predict binary response outcome [complete response at 6 months with no-re-treatment (response group) against the rest (non-response group, including partial response, progressive disease, stable disease and complete response after re-treatment within 6 months after radiation segmentectomy) using baseline clinical parameters and radiomics features. We accessed the value of different sets of predictors using cross-validation technique. AUCs were compared using DeLong tests.</p><p><strong>Results: </strong>A total 168 HCCs (mean size 2.9 ± 1.7 cm) were analyzed in 154 patients. The response group consisted of 113 HCCs and the non-response group of 55 HCCs. Baseline clinical parameters (AUC 0.531; sensitivity, 0.781; specificity, 0.279; positive predictive value (PPV), 0.345; negative predictive value (NPV), 0.724) and AFP (AUC 0.632; sensitivity, 0.833; specificity, 0.466; PPV, 0.432; NPV, 0.851) showed poor performance for response prediction. The model using a combination of radiomics features and clinical parameters/AFP showed the best performance (AUC 0.736; sensitivity, 0.706; specificity, 0.662; PPV 0.504; NPV, 0.822), significantly better than the clinical model (p < 0.001) or AFP alone (p < 0.001).</p><p><strong>Conclusion: </strong>The combination of radiomics features from pre-treatment MRI with clinical parameters and AFP showed fair performance for predicting HCC response to radiation segmentectomy, better than that of AFP. These results need further validation.</p>","PeriodicalId":7126,"journal":{"name":"Abdominal Radiology","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prediction of hepatocellular carcinoma response to radiation segmentectomy using an MRI-based machine learning approach.\",\"authors\":\"Daniel Stocker, Stefanie Hectors, Brett Marinelli, Guillermo Carbonell, Octavia Bane, Miriam Hulkower, Paul Kennedy, Weiping Ma, Sara Lewis, Edward Kim, Pei Wang, Bachir Taouli\",\"doi\":\"10.1007/s00261-024-04606-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>To evaluate the value of pre-treatment MRI-based radiomics in patients with hepatocellular carcinoma (HCC) for the prediction of response to Yttrium 90 radiation segmentectomy.</p><p><strong>Methods: </strong>This retrospective study included 154 patients (38 female; mean age 66.8 years) who underwent contrast-enhanced MRI prior to radiation segmentectomy. Radiomics features were manually extracted on volumes of interest on post-contrast T1-weighted images at the portal venous phase (PVP). Tumor-based response assessment was evaluated 6 months post-treatment using mRECIST. A logistic regression model was used to predict binary response outcome [complete response at 6 months with no-re-treatment (response group) against the rest (non-response group, including partial response, progressive disease, stable disease and complete response after re-treatment within 6 months after radiation segmentectomy) using baseline clinical parameters and radiomics features. We accessed the value of different sets of predictors using cross-validation technique. AUCs were compared using DeLong tests.</p><p><strong>Results: </strong>A total 168 HCCs (mean size 2.9 ± 1.7 cm) were analyzed in 154 patients. The response group consisted of 113 HCCs and the non-response group of 55 HCCs. Baseline clinical parameters (AUC 0.531; sensitivity, 0.781; specificity, 0.279; positive predictive value (PPV), 0.345; negative predictive value (NPV), 0.724) and AFP (AUC 0.632; sensitivity, 0.833; specificity, 0.466; PPV, 0.432; NPV, 0.851) showed poor performance for response prediction. The model using a combination of radiomics features and clinical parameters/AFP showed the best performance (AUC 0.736; sensitivity, 0.706; specificity, 0.662; PPV 0.504; NPV, 0.822), significantly better than the clinical model (p < 0.001) or AFP alone (p < 0.001).</p><p><strong>Conclusion: </strong>The combination of radiomics features from pre-treatment MRI with clinical parameters and AFP showed fair performance for predicting HCC response to radiation segmentectomy, better than that of AFP. These results need further validation.</p>\",\"PeriodicalId\":7126,\"journal\":{\"name\":\"Abdominal Radiology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Abdominal Radiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00261-024-04606-z\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Abdominal Radiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00261-024-04606-z","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
Prediction of hepatocellular carcinoma response to radiation segmentectomy using an MRI-based machine learning approach.
Purpose: To evaluate the value of pre-treatment MRI-based radiomics in patients with hepatocellular carcinoma (HCC) for the prediction of response to Yttrium 90 radiation segmentectomy.
Methods: This retrospective study included 154 patients (38 female; mean age 66.8 years) who underwent contrast-enhanced MRI prior to radiation segmentectomy. Radiomics features were manually extracted on volumes of interest on post-contrast T1-weighted images at the portal venous phase (PVP). Tumor-based response assessment was evaluated 6 months post-treatment using mRECIST. A logistic regression model was used to predict binary response outcome [complete response at 6 months with no-re-treatment (response group) against the rest (non-response group, including partial response, progressive disease, stable disease and complete response after re-treatment within 6 months after radiation segmentectomy) using baseline clinical parameters and radiomics features. We accessed the value of different sets of predictors using cross-validation technique. AUCs were compared using DeLong tests.
Results: A total 168 HCCs (mean size 2.9 ± 1.7 cm) were analyzed in 154 patients. The response group consisted of 113 HCCs and the non-response group of 55 HCCs. Baseline clinical parameters (AUC 0.531; sensitivity, 0.781; specificity, 0.279; positive predictive value (PPV), 0.345; negative predictive value (NPV), 0.724) and AFP (AUC 0.632; sensitivity, 0.833; specificity, 0.466; PPV, 0.432; NPV, 0.851) showed poor performance for response prediction. The model using a combination of radiomics features and clinical parameters/AFP showed the best performance (AUC 0.736; sensitivity, 0.706; specificity, 0.662; PPV 0.504; NPV, 0.822), significantly better than the clinical model (p < 0.001) or AFP alone (p < 0.001).
Conclusion: The combination of radiomics features from pre-treatment MRI with clinical parameters and AFP showed fair performance for predicting HCC response to radiation segmentectomy, better than that of AFP. These results need further validation.
期刊介绍:
Abdominal Radiology seeks to meet the professional needs of the abdominal radiologist by publishing clinically pertinent original, review and practice related articles on the gastrointestinal and genitourinary tracts and abdominal interventional and radiologic procedures. Case reports are generally not accepted unless they are the first report of a new disease or condition, or part of a special solicited section.
Reasons to Publish Your Article in Abdominal Radiology:
· Official journal of the Society of Abdominal Radiology (SAR)
· Published in Cooperation with:
European Society of Gastrointestinal and Abdominal Radiology (ESGAR)
European Society of Urogenital Radiology (ESUR)
Asian Society of Abdominal Radiology (ASAR)
· Efficient handling and Expeditious review
· Author feedback is provided in a mentoring style
· Global readership
· Readers can earn CME credits