利用基于磁共振成像的机器学习方法预测肝细胞癌对放射分段切除术的反应。

IF 2.3 3区 医学 Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Daniel Stocker, Stefanie Hectors, Brett Marinelli, Guillermo Carbonell, Octavia Bane, Miriam Hulkower, Paul Kennedy, Weiping Ma, Sara Lewis, Edward Kim, Pei Wang, Bachir Taouli
{"title":"利用基于磁共振成像的机器学习方法预测肝细胞癌对放射分段切除术的反应。","authors":"Daniel Stocker, Stefanie Hectors, Brett Marinelli, Guillermo Carbonell, Octavia Bane, Miriam Hulkower, Paul Kennedy, Weiping Ma, Sara Lewis, Edward Kim, Pei Wang, Bachir Taouli","doi":"10.1007/s00261-024-04606-z","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>To evaluate the value of pre-treatment MRI-based radiomics in patients with hepatocellular carcinoma (HCC) for the prediction of response to Yttrium 90 radiation segmentectomy.</p><p><strong>Methods: </strong>This retrospective study included 154 patients (38 female; mean age 66.8 years) who underwent contrast-enhanced MRI prior to radiation segmentectomy. Radiomics features were manually extracted on volumes of interest on post-contrast T1-weighted images at the portal venous phase (PVP). Tumor-based response assessment was evaluated 6 months post-treatment using mRECIST. A logistic regression model was used to predict binary response outcome [complete response at 6 months with no-re-treatment (response group) against the rest (non-response group, including partial response, progressive disease, stable disease and complete response after re-treatment within 6 months after radiation segmentectomy) using baseline clinical parameters and radiomics features. We accessed the value of different sets of predictors using cross-validation technique. AUCs were compared using DeLong tests.</p><p><strong>Results: </strong>A total 168 HCCs (mean size 2.9 ± 1.7 cm) were analyzed in 154 patients. The response group consisted of 113 HCCs and the non-response group of 55 HCCs. Baseline clinical parameters (AUC 0.531; sensitivity, 0.781; specificity, 0.279; positive predictive value (PPV), 0.345; negative predictive value (NPV), 0.724) and AFP (AUC 0.632; sensitivity, 0.833; specificity, 0.466; PPV, 0.432; NPV, 0.851) showed poor performance for response prediction. The model using a combination of radiomics features and clinical parameters/AFP showed the best performance (AUC 0.736; sensitivity, 0.706; specificity, 0.662; PPV 0.504; NPV, 0.822), significantly better than the clinical model (p < 0.001) or AFP alone (p < 0.001).</p><p><strong>Conclusion: </strong>The combination of radiomics features from pre-treatment MRI with clinical parameters and AFP showed fair performance for predicting HCC response to radiation segmentectomy, better than that of AFP. These results need further validation.</p>","PeriodicalId":7126,"journal":{"name":"Abdominal Radiology","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prediction of hepatocellular carcinoma response to radiation segmentectomy using an MRI-based machine learning approach.\",\"authors\":\"Daniel Stocker, Stefanie Hectors, Brett Marinelli, Guillermo Carbonell, Octavia Bane, Miriam Hulkower, Paul Kennedy, Weiping Ma, Sara Lewis, Edward Kim, Pei Wang, Bachir Taouli\",\"doi\":\"10.1007/s00261-024-04606-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>To evaluate the value of pre-treatment MRI-based radiomics in patients with hepatocellular carcinoma (HCC) for the prediction of response to Yttrium 90 radiation segmentectomy.</p><p><strong>Methods: </strong>This retrospective study included 154 patients (38 female; mean age 66.8 years) who underwent contrast-enhanced MRI prior to radiation segmentectomy. Radiomics features were manually extracted on volumes of interest on post-contrast T1-weighted images at the portal venous phase (PVP). Tumor-based response assessment was evaluated 6 months post-treatment using mRECIST. A logistic regression model was used to predict binary response outcome [complete response at 6 months with no-re-treatment (response group) against the rest (non-response group, including partial response, progressive disease, stable disease and complete response after re-treatment within 6 months after radiation segmentectomy) using baseline clinical parameters and radiomics features. We accessed the value of different sets of predictors using cross-validation technique. AUCs were compared using DeLong tests.</p><p><strong>Results: </strong>A total 168 HCCs (mean size 2.9 ± 1.7 cm) were analyzed in 154 patients. The response group consisted of 113 HCCs and the non-response group of 55 HCCs. Baseline clinical parameters (AUC 0.531; sensitivity, 0.781; specificity, 0.279; positive predictive value (PPV), 0.345; negative predictive value (NPV), 0.724) and AFP (AUC 0.632; sensitivity, 0.833; specificity, 0.466; PPV, 0.432; NPV, 0.851) showed poor performance for response prediction. The model using a combination of radiomics features and clinical parameters/AFP showed the best performance (AUC 0.736; sensitivity, 0.706; specificity, 0.662; PPV 0.504; NPV, 0.822), significantly better than the clinical model (p < 0.001) or AFP alone (p < 0.001).</p><p><strong>Conclusion: </strong>The combination of radiomics features from pre-treatment MRI with clinical parameters and AFP showed fair performance for predicting HCC response to radiation segmentectomy, better than that of AFP. These results need further validation.</p>\",\"PeriodicalId\":7126,\"journal\":{\"name\":\"Abdominal Radiology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Abdominal Radiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00261-024-04606-z\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Abdominal Radiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00261-024-04606-z","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

摘要

目的:评估基于核磁共振成像的肝细胞癌(HCC)患者治疗前放射组学在预测钇90放射分段切除术反应方面的价值:这项回顾性研究纳入了 154 名在放射分段切除术前接受对比增强 MRI 检查的患者(38 名女性,平均年龄 66.8 岁)。在门静脉期(PVP)对比后 T1 加权图像上的感兴趣体积上手动提取放射组学特征。使用 mRECIST 对治疗后 6 个月的肿瘤反应进行评估。利用基线临床参数和放射组学特征,采用逻辑回归模型预测二元反应结果[6 个月后完全反应且无再治疗(反应组)与其他组(无反应组,包括部分反应、疾病进展、疾病稳定和放射分段切除术后 6 个月内再治疗后完全反应)]。我们使用交叉验证技术评估了不同预测因子的价值。使用 DeLong 检验比较了 AUC:共分析了 154 名患者的 168 个 HCC(平均大小为 2.9 ± 1.7 厘米)。有反应组包括 113 个 HCC,无反应组包括 55 个 HCC。基线临床参数(AUC 0.531;灵敏度 0.781;特异性 0.279;阳性预测值 (PPV),0.345;阴性预测值 (NPV),0.724)和 AFP(AUC 0.632;灵敏度 0.833;特异性 0.466;PPV,0.432;NPV,0.851)在反应预测方面表现不佳。结合放射组学特征和临床参数/AFP 的模型显示出最佳性能(AUC 0.736;灵敏度 0.706;特异性 0.662;PPV 0.504;NPV 0.822),明显优于临床模型(P 结论:结合放射组学特征和临床参数/AFP 的模型显示出最佳性能(AUC 0.736;灵敏度 0.706;特异性 0.662;PPV 0.504;NPV 0.822):治疗前 MRI 的放射组学特征与临床参数和 AFP 的结合在预测 HCC 对放射分段切除术的反应方面表现尚可,优于 AFP。这些结果需要进一步验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Prediction of hepatocellular carcinoma response to radiation segmentectomy using an MRI-based machine learning approach.

Purpose: To evaluate the value of pre-treatment MRI-based radiomics in patients with hepatocellular carcinoma (HCC) for the prediction of response to Yttrium 90 radiation segmentectomy.

Methods: This retrospective study included 154 patients (38 female; mean age 66.8 years) who underwent contrast-enhanced MRI prior to radiation segmentectomy. Radiomics features were manually extracted on volumes of interest on post-contrast T1-weighted images at the portal venous phase (PVP). Tumor-based response assessment was evaluated 6 months post-treatment using mRECIST. A logistic regression model was used to predict binary response outcome [complete response at 6 months with no-re-treatment (response group) against the rest (non-response group, including partial response, progressive disease, stable disease and complete response after re-treatment within 6 months after radiation segmentectomy) using baseline clinical parameters and radiomics features. We accessed the value of different sets of predictors using cross-validation technique. AUCs were compared using DeLong tests.

Results: A total 168 HCCs (mean size 2.9 ± 1.7 cm) were analyzed in 154 patients. The response group consisted of 113 HCCs and the non-response group of 55 HCCs. Baseline clinical parameters (AUC 0.531; sensitivity, 0.781; specificity, 0.279; positive predictive value (PPV), 0.345; negative predictive value (NPV), 0.724) and AFP (AUC 0.632; sensitivity, 0.833; specificity, 0.466; PPV, 0.432; NPV, 0.851) showed poor performance for response prediction. The model using a combination of radiomics features and clinical parameters/AFP showed the best performance (AUC 0.736; sensitivity, 0.706; specificity, 0.662; PPV 0.504; NPV, 0.822), significantly better than the clinical model (p < 0.001) or AFP alone (p < 0.001).

Conclusion: The combination of radiomics features from pre-treatment MRI with clinical parameters and AFP showed fair performance for predicting HCC response to radiation segmentectomy, better than that of AFP. These results need further validation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Abdominal Radiology
Abdominal Radiology Medicine-Radiology, Nuclear Medicine and Imaging
CiteScore
5.20
自引率
8.30%
发文量
334
期刊介绍: Abdominal Radiology seeks to meet the professional needs of the abdominal radiologist by publishing clinically pertinent original, review and practice related articles on the gastrointestinal and genitourinary tracts and abdominal interventional and radiologic procedures. Case reports are generally not accepted unless they are the first report of a new disease or condition, or part of a special solicited section. Reasons to Publish Your Article in Abdominal Radiology: · Official journal of the Society of Abdominal Radiology (SAR) · Published in Cooperation with: European Society of Gastrointestinal and Abdominal Radiology (ESGAR) European Society of Urogenital Radiology (ESUR) Asian Society of Abdominal Radiology (ASAR) · Efficient handling and Expeditious review · Author feedback is provided in a mentoring style · Global readership · Readers can earn CME credits
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信