{"title":"印度东北部香蕉自然感染的香蕉条纹 MY 病毒和香蕉条纹 IM 病毒的新基因变种。","authors":"Richa Rai, Yumlembam Rupert Anand, Sapam Monteshori, Damini Diksha, Saurabh Kumar Dubey, Virendra Kumar Baranwal, Susheel Kumar Sharma","doi":"10.1007/s13205-024-04113-4","DOIUrl":null,"url":null,"abstract":"<p><p>Divergent banana streak viruses (BSV) were characterized from banana plants exhibiting diverse symptoms in the Northeast region (NER) of India. Using rolling circle amplification (RCA), the complete genome sequences of seven episomal banana streak MY virus (BSMYV) isolates, including two novel variants, and two new banana streak IM virus (BSIMV) isolates were characterized. The novel BSMYV genetic variants were associated with conspicuous necrosis on newly emerged leaves, peduncle distortion, pseudostem internal necrosis, in addition to common streak symptoms. For complete genome nucleotide sequences, BSMYV-IN4 and IN5 shared 77-79% identity with other BSMYVs, while BSMYV-IN7 and IN8 exhibited identities of 77-97%. This study reports for the first time, the complete genomes of two banana streak IM virus (BSIMV-IN1 and -IN2) infecting triploid banana hybrids exhibiting leaf distortion, stunted rosette-like growth, and necrosis, sharing 87% sequence identity with reference BSIMV genome (GenBank accession no. HQ593112). Phylogenetic inference based on complete genomes revealed the distinct and congruent placement of BSMYV-IN4 and IN5 within the BSMYV cluster. Pairwise sequence comparisons of the conserved RT/RNase H nucleotide (nt) sequences revealed that the BSMYV-IN7 and IN4 isolates showed 85% and 97% identity to BSMYV (AY805074), respectively, which shared highest nt identity with BSMYV-IN6, IN9, and IN10, at 100%. The RT/RNase H nt sequences of BSIMV-IN1 and IN2 had 98% identity with the BSIMV (HQ593112), but were characterized as novel variants of BSIMV based on complete genomes. An analysis of relative synonymous codon usage (RSCU) pattern in the ORFIII polyprotein of BSMYV and BSIMV isolates revealed AGA and AGG (arginine) as the most frequently overrepresented codons (>1.5), evolutionary conserved in the genome of both species. A total of 14 recombination events were detected among the 36 BSV genomes, with recombination breakpoints mainly located in the ORFI, III, and IGR genomic regions. A novel phylogenetic cluster, comprised of BSMYV-IN4 and IN5 within the clade I was probably derived from heterologous recombination between parents resembling banana streak VN virus (BSVNV; AY750155) and banana streak GF virus (BSGFV; KJ013507) isolates. The present study conclusively reports the infection of genetically and symptomatically distinct variants of BSMYV and BSIMV infecting banana hybrids in NER India.</p>","PeriodicalId":7067,"journal":{"name":"3 Biotech","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11499479/pdf/","citationCount":"0","resultStr":"{\"title\":\"Novel genetic variants of banana streak MY virus and banana streak IM virus naturally infecting banana in Northeast India.\",\"authors\":\"Richa Rai, Yumlembam Rupert Anand, Sapam Monteshori, Damini Diksha, Saurabh Kumar Dubey, Virendra Kumar Baranwal, Susheel Kumar Sharma\",\"doi\":\"10.1007/s13205-024-04113-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Divergent banana streak viruses (BSV) were characterized from banana plants exhibiting diverse symptoms in the Northeast region (NER) of India. Using rolling circle amplification (RCA), the complete genome sequences of seven episomal banana streak MY virus (BSMYV) isolates, including two novel variants, and two new banana streak IM virus (BSIMV) isolates were characterized. The novel BSMYV genetic variants were associated with conspicuous necrosis on newly emerged leaves, peduncle distortion, pseudostem internal necrosis, in addition to common streak symptoms. For complete genome nucleotide sequences, BSMYV-IN4 and IN5 shared 77-79% identity with other BSMYVs, while BSMYV-IN7 and IN8 exhibited identities of 77-97%. This study reports for the first time, the complete genomes of two banana streak IM virus (BSIMV-IN1 and -IN2) infecting triploid banana hybrids exhibiting leaf distortion, stunted rosette-like growth, and necrosis, sharing 87% sequence identity with reference BSIMV genome (GenBank accession no. HQ593112). Phylogenetic inference based on complete genomes revealed the distinct and congruent placement of BSMYV-IN4 and IN5 within the BSMYV cluster. Pairwise sequence comparisons of the conserved RT/RNase H nucleotide (nt) sequences revealed that the BSMYV-IN7 and IN4 isolates showed 85% and 97% identity to BSMYV (AY805074), respectively, which shared highest nt identity with BSMYV-IN6, IN9, and IN10, at 100%. The RT/RNase H nt sequences of BSIMV-IN1 and IN2 had 98% identity with the BSIMV (HQ593112), but were characterized as novel variants of BSIMV based on complete genomes. An analysis of relative synonymous codon usage (RSCU) pattern in the ORFIII polyprotein of BSMYV and BSIMV isolates revealed AGA and AGG (arginine) as the most frequently overrepresented codons (>1.5), evolutionary conserved in the genome of both species. A total of 14 recombination events were detected among the 36 BSV genomes, with recombination breakpoints mainly located in the ORFI, III, and IGR genomic regions. A novel phylogenetic cluster, comprised of BSMYV-IN4 and IN5 within the clade I was probably derived from heterologous recombination between parents resembling banana streak VN virus (BSVNV; AY750155) and banana streak GF virus (BSGFV; KJ013507) isolates. The present study conclusively reports the infection of genetically and symptomatically distinct variants of BSMYV and BSIMV infecting banana hybrids in NER India.</p>\",\"PeriodicalId\":7067,\"journal\":{\"name\":\"3 Biotech\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11499479/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"3 Biotech\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s13205-024-04113-4\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/23 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"3 Biotech","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s13205-024-04113-4","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/23 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Novel genetic variants of banana streak MY virus and banana streak IM virus naturally infecting banana in Northeast India.
Divergent banana streak viruses (BSV) were characterized from banana plants exhibiting diverse symptoms in the Northeast region (NER) of India. Using rolling circle amplification (RCA), the complete genome sequences of seven episomal banana streak MY virus (BSMYV) isolates, including two novel variants, and two new banana streak IM virus (BSIMV) isolates were characterized. The novel BSMYV genetic variants were associated with conspicuous necrosis on newly emerged leaves, peduncle distortion, pseudostem internal necrosis, in addition to common streak symptoms. For complete genome nucleotide sequences, BSMYV-IN4 and IN5 shared 77-79% identity with other BSMYVs, while BSMYV-IN7 and IN8 exhibited identities of 77-97%. This study reports for the first time, the complete genomes of two banana streak IM virus (BSIMV-IN1 and -IN2) infecting triploid banana hybrids exhibiting leaf distortion, stunted rosette-like growth, and necrosis, sharing 87% sequence identity with reference BSIMV genome (GenBank accession no. HQ593112). Phylogenetic inference based on complete genomes revealed the distinct and congruent placement of BSMYV-IN4 and IN5 within the BSMYV cluster. Pairwise sequence comparisons of the conserved RT/RNase H nucleotide (nt) sequences revealed that the BSMYV-IN7 and IN4 isolates showed 85% and 97% identity to BSMYV (AY805074), respectively, which shared highest nt identity with BSMYV-IN6, IN9, and IN10, at 100%. The RT/RNase H nt sequences of BSIMV-IN1 and IN2 had 98% identity with the BSIMV (HQ593112), but were characterized as novel variants of BSIMV based on complete genomes. An analysis of relative synonymous codon usage (RSCU) pattern in the ORFIII polyprotein of BSMYV and BSIMV isolates revealed AGA and AGG (arginine) as the most frequently overrepresented codons (>1.5), evolutionary conserved in the genome of both species. A total of 14 recombination events were detected among the 36 BSV genomes, with recombination breakpoints mainly located in the ORFI, III, and IGR genomic regions. A novel phylogenetic cluster, comprised of BSMYV-IN4 and IN5 within the clade I was probably derived from heterologous recombination between parents resembling banana streak VN virus (BSVNV; AY750155) and banana streak GF virus (BSGFV; KJ013507) isolates. The present study conclusively reports the infection of genetically and symptomatically distinct variants of BSMYV and BSIMV infecting banana hybrids in NER India.
3 BiotechAgricultural and Biological Sciences-Agricultural and Biological Sciences (miscellaneous)
CiteScore
6.00
自引率
0.00%
发文量
314
期刊介绍:
3 Biotech publishes the results of the latest research related to the study and application of biotechnology to:
- Medicine and Biomedical Sciences
- Agriculture
- The Environment
The focus on these three technology sectors recognizes that complete Biotechnology applications often require a combination of techniques. 3 Biotech not only presents the latest developments in biotechnology but also addresses the problems and benefits of integrating a variety of techniques for a particular application. 3 Biotech will appeal to scientists and engineers in both academia and industry focused on the safe and efficient application of Biotechnology to Medicine, Agriculture and the Environment.