玉米 COMT 基因家族的全基因组鉴定及其对光的响应功能

IF 2.1 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Deying Lei, Yuzhang Chen, Yuan Li, Yanhong Hu, Jiwei Zhang, Licheng Wang
{"title":"玉米 COMT 基因家族的全基因组鉴定及其对光的响应功能","authors":"Deying Lei, Yuzhang Chen, Yuan Li, Yanhong Hu, Jiwei Zhang, Licheng Wang","doi":"10.1007/s10528-024-10942-y","DOIUrl":null,"url":null,"abstract":"<p><p>Maize is a major crop, feed, and industrial material. Caffeic acid-O-methyltransferase (COMT) is a methylase closely associated with lignin biosynthesis and plant growth and resistance. In this study, we identified the COMT gene (ZmCOMT) family in maize and further analyzed its phylogenetic evolution, subcellular localization, and its function in response to light. Thirty-one ZmCOMT genes were identified in the maize genome, which were distributed across eight chromosomes and mainly clustered on chromosome 4. Most ZmCOMT proteins were predicted to localize in the cytoplasm. Ten different conserved motifs were present in most ZmCOMT proteins, and motif1, motif6, and motif7 were highly conserved and present in all ZmCOMT proteins. The photoresponsivity elements were conserved among all members, and ZmCOMT22 and ZmCOMT10 genes responsive to light. This result suggests a potential function for these two genes in lignin biosynthesis which a previous study had linked to light regulation. Jasmonic acid responsive and abscisic acid cis-acting elements were present in the promoter regions of family members, thus the family may be regulated by hormone signaling pathways of maize. In summary, ZmCOMT genes are ancient, and the highly conserved motifs may be significant in survival and evolution of maize. Furthermore, light may influence lignin biosynthesis and photosynthesis through ZmCOMT genes. This research provided theoretical basis for lignin biosynthesis of maize and the potential value of ZmCOMT22 and ZmCOMT10 genes to enhance plant photosynthesis for facing global warming.</p>","PeriodicalId":482,"journal":{"name":"Biochemical Genetics","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Genome-Wide Identification of COMT Gene Family in Maize and its Function in Response to Light.\",\"authors\":\"Deying Lei, Yuzhang Chen, Yuan Li, Yanhong Hu, Jiwei Zhang, Licheng Wang\",\"doi\":\"10.1007/s10528-024-10942-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Maize is a major crop, feed, and industrial material. Caffeic acid-O-methyltransferase (COMT) is a methylase closely associated with lignin biosynthesis and plant growth and resistance. In this study, we identified the COMT gene (ZmCOMT) family in maize and further analyzed its phylogenetic evolution, subcellular localization, and its function in response to light. Thirty-one ZmCOMT genes were identified in the maize genome, which were distributed across eight chromosomes and mainly clustered on chromosome 4. Most ZmCOMT proteins were predicted to localize in the cytoplasm. Ten different conserved motifs were present in most ZmCOMT proteins, and motif1, motif6, and motif7 were highly conserved and present in all ZmCOMT proteins. The photoresponsivity elements were conserved among all members, and ZmCOMT22 and ZmCOMT10 genes responsive to light. This result suggests a potential function for these two genes in lignin biosynthesis which a previous study had linked to light regulation. Jasmonic acid responsive and abscisic acid cis-acting elements were present in the promoter regions of family members, thus the family may be regulated by hormone signaling pathways of maize. In summary, ZmCOMT genes are ancient, and the highly conserved motifs may be significant in survival and evolution of maize. Furthermore, light may influence lignin biosynthesis and photosynthesis through ZmCOMT genes. This research provided theoretical basis for lignin biosynthesis of maize and the potential value of ZmCOMT22 and ZmCOMT10 genes to enhance plant photosynthesis for facing global warming.</p>\",\"PeriodicalId\":482,\"journal\":{\"name\":\"Biochemical Genetics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochemical Genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s10528-024-10942-y\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10528-024-10942-y","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

玉米是一种主要的农作物、饲料和工业原料。咖啡酸-O-甲基转移酶(COMT)是一种与木质素生物合成、植物生长和抗性密切相关的甲基化酶。本研究确定了玉米中的 COMT 基因(ZmCOMT)家族,并进一步分析了其系统进化、亚细胞定位及其对光的响应功能。在玉米基因组中发现了31个ZmCOMT基因,它们分布在8条染色体上,主要集中在4号染色体上。大多数 ZmCOMT 蛋白被预测定位在细胞质中。大多数 ZmCOMT 蛋白中存在 10 个不同的保守基团,其中基团 1、基团 6 和基团 7 高度保守,存在于所有 ZmCOMT 蛋白中。光响应元件在所有成员中都是保守的,ZmCOMT22 和 ZmCOMT10 基因对光有响应。这一结果表明了这两个基因在木质素生物合成中的潜在功能,而之前的研究曾将其与光调节联系起来。该家族成员的启动子区域存在茉莉酸响应元件和赤霉酸顺式作用元件,因此该家族可能受玉米激素信号通路的调控。总之,ZmCOMT 基因是古老的基因,其高度保守的基序可能对玉米的生存和进化具有重要意义。此外,光可能通过ZmCOMT基因影响木质素的生物合成和光合作用。该研究为玉米的木质素生物合成提供了理论依据,也为ZmCOMT22和ZmCOMT10基因提高植物光合作用以应对全球变暖提供了潜在价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Genome-Wide Identification of COMT Gene Family in Maize and its Function in Response to Light.

Maize is a major crop, feed, and industrial material. Caffeic acid-O-methyltransferase (COMT) is a methylase closely associated with lignin biosynthesis and plant growth and resistance. In this study, we identified the COMT gene (ZmCOMT) family in maize and further analyzed its phylogenetic evolution, subcellular localization, and its function in response to light. Thirty-one ZmCOMT genes were identified in the maize genome, which were distributed across eight chromosomes and mainly clustered on chromosome 4. Most ZmCOMT proteins were predicted to localize in the cytoplasm. Ten different conserved motifs were present in most ZmCOMT proteins, and motif1, motif6, and motif7 were highly conserved and present in all ZmCOMT proteins. The photoresponsivity elements were conserved among all members, and ZmCOMT22 and ZmCOMT10 genes responsive to light. This result suggests a potential function for these two genes in lignin biosynthesis which a previous study had linked to light regulation. Jasmonic acid responsive and abscisic acid cis-acting elements were present in the promoter regions of family members, thus the family may be regulated by hormone signaling pathways of maize. In summary, ZmCOMT genes are ancient, and the highly conserved motifs may be significant in survival and evolution of maize. Furthermore, light may influence lignin biosynthesis and photosynthesis through ZmCOMT genes. This research provided theoretical basis for lignin biosynthesis of maize and the potential value of ZmCOMT22 and ZmCOMT10 genes to enhance plant photosynthesis for facing global warming.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biochemical Genetics
Biochemical Genetics 生物-生化与分子生物学
CiteScore
3.90
自引率
0.00%
发文量
133
审稿时长
4.8 months
期刊介绍: Biochemical Genetics welcomes original manuscripts that address and test clear scientific hypotheses, are directed to a broad scientific audience, and clearly contribute to the advancement of the field through the use of sound sampling or experimental design, reliable analytical methodologies and robust statistical analyses. Although studies focusing on particular regions and target organisms are welcome, it is not the journal’s goal to publish essentially descriptive studies that provide results with narrow applicability, or are based on very small samples or pseudoreplication. Rather, Biochemical Genetics welcomes review articles that go beyond summarizing previous publications and create added value through the systematic analysis and critique of the current state of knowledge or by conducting meta-analyses. Methodological articles are also within the scope of Biological Genetics, particularly when new laboratory techniques or computational approaches are fully described and thoroughly compared with the existing benchmark methods. Biochemical Genetics welcomes articles on the following topics: Genomics; Proteomics; Population genetics; Phylogenetics; Metagenomics; Microbial genetics; Genetics and evolution of wild and cultivated plants; Animal genetics and evolution; Human genetics and evolution; Genetic disorders; Genetic markers of diseases; Gene technology and therapy; Experimental and analytical methods; Statistical and computational methods.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信