Pedro A S Salgueiro, Bettencourt da Silva Ricardo J N
{"title":"通过低分辨率气相色谱-质谱仪对化合物进行统计鉴定:催泪瓦斯喷雾剂中催泪剂的鉴定。","authors":"Pedro A S Salgueiro, Bettencourt da Silva Ricardo J N","doi":"10.1016/j.talanta.2024.127061","DOIUrl":null,"url":null,"abstract":"<p><p>Gas-chromatography hyphenated with low-resolution mass spectrometry is a very flexible tool for the cost-effective identification and quantification of volatile compounds in complex matrices. In some analytical fields, criteria for the agreement between retention time and mass spectra of the analyte in calibrators and samples are defined based on the general understanding of the performance of these parameters. However, since this harmonisation is not based on experimental performance observed for specific GC-MS conditions and analyte it leads to false identifications. This research proposes a novel and robust tool for defining statistically sound criteria for the identification of compounds by GC-MS and LC-MS using experimental data. The Monte Carlo Method (MCM) simulation of the correlated abundance of characteristic ions of analyte mass spectrum allows simulating the abundance ratio difference of the analyte in a calibrator and sample used for statistically sound identifications. The Cholesky decomposition of the covariance matrix of ion abundances for MCM simulations allows the reliable use of many ion abundance ratios in identifications. The developed methodology was implemented in a user-friendly Excel spreadsheet and applied to the identification of tear gas agents in tear gas sprays. Criteria defined by SANTE for identifying pesticide residues in foodstuffs were compared with the developed tool. The cross-validation of computational and SANTE tools allowed concluding that the statistical control of retention time and mass spectra performs according to the defined confidence level. On the other hand, the SANTE criteria can produce up to 92 % false identifications for being too strict considering signal dispersion.</p>","PeriodicalId":435,"journal":{"name":"Talanta","volume":"282 ","pages":"127061"},"PeriodicalIF":5.6000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Statistically sound identification of compounds by low-resolution GC-MS: Identification of tear agents in tear gas sprays.\",\"authors\":\"Pedro A S Salgueiro, Bettencourt da Silva Ricardo J N\",\"doi\":\"10.1016/j.talanta.2024.127061\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Gas-chromatography hyphenated with low-resolution mass spectrometry is a very flexible tool for the cost-effective identification and quantification of volatile compounds in complex matrices. In some analytical fields, criteria for the agreement between retention time and mass spectra of the analyte in calibrators and samples are defined based on the general understanding of the performance of these parameters. However, since this harmonisation is not based on experimental performance observed for specific GC-MS conditions and analyte it leads to false identifications. This research proposes a novel and robust tool for defining statistically sound criteria for the identification of compounds by GC-MS and LC-MS using experimental data. The Monte Carlo Method (MCM) simulation of the correlated abundance of characteristic ions of analyte mass spectrum allows simulating the abundance ratio difference of the analyte in a calibrator and sample used for statistically sound identifications. The Cholesky decomposition of the covariance matrix of ion abundances for MCM simulations allows the reliable use of many ion abundance ratios in identifications. The developed methodology was implemented in a user-friendly Excel spreadsheet and applied to the identification of tear gas agents in tear gas sprays. Criteria defined by SANTE for identifying pesticide residues in foodstuffs were compared with the developed tool. The cross-validation of computational and SANTE tools allowed concluding that the statistical control of retention time and mass spectra performs according to the defined confidence level. On the other hand, the SANTE criteria can produce up to 92 % false identifications for being too strict considering signal dispersion.</p>\",\"PeriodicalId\":435,\"journal\":{\"name\":\"Talanta\",\"volume\":\"282 \",\"pages\":\"127061\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Talanta\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1016/j.talanta.2024.127061\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/18 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Talanta","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.talanta.2024.127061","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/18 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Statistically sound identification of compounds by low-resolution GC-MS: Identification of tear agents in tear gas sprays.
Gas-chromatography hyphenated with low-resolution mass spectrometry is a very flexible tool for the cost-effective identification and quantification of volatile compounds in complex matrices. In some analytical fields, criteria for the agreement between retention time and mass spectra of the analyte in calibrators and samples are defined based on the general understanding of the performance of these parameters. However, since this harmonisation is not based on experimental performance observed for specific GC-MS conditions and analyte it leads to false identifications. This research proposes a novel and robust tool for defining statistically sound criteria for the identification of compounds by GC-MS and LC-MS using experimental data. The Monte Carlo Method (MCM) simulation of the correlated abundance of characteristic ions of analyte mass spectrum allows simulating the abundance ratio difference of the analyte in a calibrator and sample used for statistically sound identifications. The Cholesky decomposition of the covariance matrix of ion abundances for MCM simulations allows the reliable use of many ion abundance ratios in identifications. The developed methodology was implemented in a user-friendly Excel spreadsheet and applied to the identification of tear gas agents in tear gas sprays. Criteria defined by SANTE for identifying pesticide residues in foodstuffs were compared with the developed tool. The cross-validation of computational and SANTE tools allowed concluding that the statistical control of retention time and mass spectra performs according to the defined confidence level. On the other hand, the SANTE criteria can produce up to 92 % false identifications for being too strict considering signal dispersion.
期刊介绍:
Talanta provides a forum for the publication of original research papers, short communications, and critical reviews in all branches of pure and applied analytical chemistry. Papers are evaluated based on established guidelines, including the fundamental nature of the study, scientific novelty, substantial improvement or advantage over existing technology or methods, and demonstrated analytical applicability. Original research papers on fundamental studies, and on novel sensor and instrumentation developments, are encouraged. Novel or improved applications in areas such as clinical and biological chemistry, environmental analysis, geochemistry, materials science and engineering, and analytical platforms for omics development are welcome.
Analytical performance of methods should be determined, including interference and matrix effects, and methods should be validated by comparison with a standard method, or analysis of a certified reference material. Simple spiking recoveries may not be sufficient. The developed method should especially comprise information on selectivity, sensitivity, detection limits, accuracy, and reliability. However, applying official validation or robustness studies to a routine method or technique does not necessarily constitute novelty. Proper statistical treatment of the data should be provided. Relevant literature should be cited, including related publications by the authors, and authors should discuss how their proposed methodology compares with previously reported methods.