{"title":"在苏格兰共同开发以环境为导向的药物处方框架--一项混合方法研究。","authors":"Lydia Niemi, Naoko Arakawa, Miriam Glendell, Zisis Gagkas, Stuart Gibb, Claire Anderson, Sharon Pfleger","doi":"10.1016/j.scitotenv.2024.176929","DOIUrl":null,"url":null,"abstract":"<p><p>The presence of human pharmaceuticals in the aquatic environment is recognised internationally as an important public health and environmental issue. In Scotland, healthcare sustainability targets call for improvements to medicine prescribing and use to reduce healthcare's impact on the environment. This proof-of-concept study aimed to develop a framework on the environmental impact of pharmaceuticals to use as a knowledge support tool for healthcare professionals, focussing on pharmaceutical pollution. Nominal Group Technique was applied to achieve consensus on pharmaceuticals and modelling factors for the framework, working with a panel of cross-sector stakeholders. Bayesian Belief Network modelling was applied to predict the environmental impact (calculated from hazard and exposure factors) of selected pharmaceuticals, with Scotland-wide mapping for visualisation in freshwater catchments. The model calculated the pollution risk score of the individual pharmaceuticals, using the ratio of prescribed mass vs. mass that would not exceed the predicted no-effect concentration in the freshwater environment. The pharmaceuticals exhibited different risk patterns, and spatial variation of risk was evident (generally related to population density), with the most catchments predicted to exceed the pollution risk score for clarithromycin (probability >80 % in 35 of 40 modelled catchments). Simulated risk scores were compared against observed risk calculated as the ratio of measured environmental concentrations from national regulatory and research monitoring and predicted no-effect concentrations. The model generally overpredicted risk, likely due to missing factors (e.g. solid-phase sorption, temporal variation), low spatial resolution, and low temporal resolution of the monitoring data. This work demonstrates a novel, trans-disciplinary approach to develop tools aiding collation and integration of environmental information into healthcare decision-making, through application of public health, environmental science, and health services research methods. Future work will refine the framework with additional clinical and environmental factors to improve model performance, and develop electronic interfaces to communicate environmental information to healthcare professionals.</p>","PeriodicalId":422,"journal":{"name":"Science of the Total Environment","volume":" ","pages":"176929"},"PeriodicalIF":8.2000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Co-developing frameworks towards environmentally directed pharmaceutical prescribing in Scotland - A mixed methods study.\",\"authors\":\"Lydia Niemi, Naoko Arakawa, Miriam Glendell, Zisis Gagkas, Stuart Gibb, Claire Anderson, Sharon Pfleger\",\"doi\":\"10.1016/j.scitotenv.2024.176929\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The presence of human pharmaceuticals in the aquatic environment is recognised internationally as an important public health and environmental issue. In Scotland, healthcare sustainability targets call for improvements to medicine prescribing and use to reduce healthcare's impact on the environment. This proof-of-concept study aimed to develop a framework on the environmental impact of pharmaceuticals to use as a knowledge support tool for healthcare professionals, focussing on pharmaceutical pollution. Nominal Group Technique was applied to achieve consensus on pharmaceuticals and modelling factors for the framework, working with a panel of cross-sector stakeholders. Bayesian Belief Network modelling was applied to predict the environmental impact (calculated from hazard and exposure factors) of selected pharmaceuticals, with Scotland-wide mapping for visualisation in freshwater catchments. The model calculated the pollution risk score of the individual pharmaceuticals, using the ratio of prescribed mass vs. mass that would not exceed the predicted no-effect concentration in the freshwater environment. The pharmaceuticals exhibited different risk patterns, and spatial variation of risk was evident (generally related to population density), with the most catchments predicted to exceed the pollution risk score for clarithromycin (probability >80 % in 35 of 40 modelled catchments). Simulated risk scores were compared against observed risk calculated as the ratio of measured environmental concentrations from national regulatory and research monitoring and predicted no-effect concentrations. The model generally overpredicted risk, likely due to missing factors (e.g. solid-phase sorption, temporal variation), low spatial resolution, and low temporal resolution of the monitoring data. This work demonstrates a novel, trans-disciplinary approach to develop tools aiding collation and integration of environmental information into healthcare decision-making, through application of public health, environmental science, and health services research methods. Future work will refine the framework with additional clinical and environmental factors to improve model performance, and develop electronic interfaces to communicate environmental information to healthcare professionals.</p>\",\"PeriodicalId\":422,\"journal\":{\"name\":\"Science of the Total Environment\",\"volume\":\" \",\"pages\":\"176929\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2024-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science of the Total Environment\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1016/j.scitotenv.2024.176929\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/31 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science of the Total Environment","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.scitotenv.2024.176929","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/31 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Co-developing frameworks towards environmentally directed pharmaceutical prescribing in Scotland - A mixed methods study.
The presence of human pharmaceuticals in the aquatic environment is recognised internationally as an important public health and environmental issue. In Scotland, healthcare sustainability targets call for improvements to medicine prescribing and use to reduce healthcare's impact on the environment. This proof-of-concept study aimed to develop a framework on the environmental impact of pharmaceuticals to use as a knowledge support tool for healthcare professionals, focussing on pharmaceutical pollution. Nominal Group Technique was applied to achieve consensus on pharmaceuticals and modelling factors for the framework, working with a panel of cross-sector stakeholders. Bayesian Belief Network modelling was applied to predict the environmental impact (calculated from hazard and exposure factors) of selected pharmaceuticals, with Scotland-wide mapping for visualisation in freshwater catchments. The model calculated the pollution risk score of the individual pharmaceuticals, using the ratio of prescribed mass vs. mass that would not exceed the predicted no-effect concentration in the freshwater environment. The pharmaceuticals exhibited different risk patterns, and spatial variation of risk was evident (generally related to population density), with the most catchments predicted to exceed the pollution risk score for clarithromycin (probability >80 % in 35 of 40 modelled catchments). Simulated risk scores were compared against observed risk calculated as the ratio of measured environmental concentrations from national regulatory and research monitoring and predicted no-effect concentrations. The model generally overpredicted risk, likely due to missing factors (e.g. solid-phase sorption, temporal variation), low spatial resolution, and low temporal resolution of the monitoring data. This work demonstrates a novel, trans-disciplinary approach to develop tools aiding collation and integration of environmental information into healthcare decision-making, through application of public health, environmental science, and health services research methods. Future work will refine the framework with additional clinical and environmental factors to improve model performance, and develop electronic interfaces to communicate environmental information to healthcare professionals.
期刊介绍:
The Science of the Total Environment is an international journal dedicated to scientific research on the environment and its interaction with humanity. It covers a wide range of disciplines and seeks to publish innovative, hypothesis-driven, and impactful research that explores the entire environment, including the atmosphere, lithosphere, hydrosphere, biosphere, and anthroposphere.
The journal's updated Aims & Scope emphasizes the importance of interdisciplinary environmental research with broad impact. Priority is given to studies that advance fundamental understanding and explore the interconnectedness of multiple environmental spheres. Field studies are preferred, while laboratory experiments must demonstrate significant methodological advancements or mechanistic insights with direct relevance to the environment.