{"title":"由 SgPG1 介导的边界样细胞形成赋予黔龙胆(Stylosanthes guianensis)抗铝性。","authors":"Yan Lin, Guoxuan Liu, Pandao Liu, Qianqian Chen, Xueqiong Guo, Xing Lu, Zefei Cai, Lili Sun, Jiping Liu, Kang Chen, Guodao Liu, Jiang Tian, Cuiyue Liang","doi":"10.1111/tpj.17073","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p><i>Stylosanthes</i> is an important forage legume in tropical areas with strong resistance to aluminum (Al) toxicity, though knowledge of mechanisms underlying this resistance remains fragmentary. We found that border-like cells (BLCs) were constitutively produced surrounding the root tips of all 54 examined <i>Stylosanthes guianensis</i> genotypes, but not the <i>Stylosanthes viscose</i> genotype TF0140. In genotypic comparisons under Al conditions, the <i>S. guianensis</i> genotype RY#2 retained significantly more Al in BLCs and thereby showed higher relative root growth than TF0140. Formation of BLCs accompanied changes in cell wall pectin epitopes and differential expression of genes involved in pectin metabolism, including a <i>polygalacturonase</i> (<i>SgPG1</i>). The expression pattern of <i>SgPG1</i> was consistent with the formation of BLCs in both RY#2 and TF0140. SgPG1 was localized in cell walls and exhibited high activities mediating demethyl-esterified homogalacturonan degradation. Overexpressing <i>SgPG1</i> changed cell wall pectin epitopes, enhanced BLCs production, and Al resistance in both Arabidopsis and <i>Stylosanthes</i> hairy roots. Furthermore, combining protein-DNA binding assays <i>in vitro</i> and <i>in vivo</i>, a bHLH transcription factor SgbHLH19 was demonstrated to be the upstream regulator of <i>SgPG1</i>. Our study demonstrates that <i>S. guianensis</i> Al resistance mainly relies on BLCs, whose formation involves cell wall pectin epitope modification by SgPG1.</p>\n </div>","PeriodicalId":233,"journal":{"name":"The Plant Journal","volume":"120 4","pages":"1605-1624"},"PeriodicalIF":6.2000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Border-like cell formation mediated by SgPG1 confers aluminum resistance in Stylosanthes guianensis\",\"authors\":\"Yan Lin, Guoxuan Liu, Pandao Liu, Qianqian Chen, Xueqiong Guo, Xing Lu, Zefei Cai, Lili Sun, Jiping Liu, Kang Chen, Guodao Liu, Jiang Tian, Cuiyue Liang\",\"doi\":\"10.1111/tpj.17073\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p><i>Stylosanthes</i> is an important forage legume in tropical areas with strong resistance to aluminum (Al) toxicity, though knowledge of mechanisms underlying this resistance remains fragmentary. We found that border-like cells (BLCs) were constitutively produced surrounding the root tips of all 54 examined <i>Stylosanthes guianensis</i> genotypes, but not the <i>Stylosanthes viscose</i> genotype TF0140. In genotypic comparisons under Al conditions, the <i>S. guianensis</i> genotype RY#2 retained significantly more Al in BLCs and thereby showed higher relative root growth than TF0140. Formation of BLCs accompanied changes in cell wall pectin epitopes and differential expression of genes involved in pectin metabolism, including a <i>polygalacturonase</i> (<i>SgPG1</i>). The expression pattern of <i>SgPG1</i> was consistent with the formation of BLCs in both RY#2 and TF0140. SgPG1 was localized in cell walls and exhibited high activities mediating demethyl-esterified homogalacturonan degradation. Overexpressing <i>SgPG1</i> changed cell wall pectin epitopes, enhanced BLCs production, and Al resistance in both Arabidopsis and <i>Stylosanthes</i> hairy roots. Furthermore, combining protein-DNA binding assays <i>in vitro</i> and <i>in vivo</i>, a bHLH transcription factor SgbHLH19 was demonstrated to be the upstream regulator of <i>SgPG1</i>. Our study demonstrates that <i>S. guianensis</i> Al resistance mainly relies on BLCs, whose formation involves cell wall pectin epitope modification by SgPG1.</p>\\n </div>\",\"PeriodicalId\":233,\"journal\":{\"name\":\"The Plant Journal\",\"volume\":\"120 4\",\"pages\":\"1605-1624\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2024-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Plant Journal\",\"FirstCategoryId\":\"2\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/tpj.17073\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Plant Journal","FirstCategoryId":"2","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/tpj.17073","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Border-like cell formation mediated by SgPG1 confers aluminum resistance in Stylosanthes guianensis
Stylosanthes is an important forage legume in tropical areas with strong resistance to aluminum (Al) toxicity, though knowledge of mechanisms underlying this resistance remains fragmentary. We found that border-like cells (BLCs) were constitutively produced surrounding the root tips of all 54 examined Stylosanthes guianensis genotypes, but not the Stylosanthes viscose genotype TF0140. In genotypic comparisons under Al conditions, the S. guianensis genotype RY#2 retained significantly more Al in BLCs and thereby showed higher relative root growth than TF0140. Formation of BLCs accompanied changes in cell wall pectin epitopes and differential expression of genes involved in pectin metabolism, including a polygalacturonase (SgPG1). The expression pattern of SgPG1 was consistent with the formation of BLCs in both RY#2 and TF0140. SgPG1 was localized in cell walls and exhibited high activities mediating demethyl-esterified homogalacturonan degradation. Overexpressing SgPG1 changed cell wall pectin epitopes, enhanced BLCs production, and Al resistance in both Arabidopsis and Stylosanthes hairy roots. Furthermore, combining protein-DNA binding assays in vitro and in vivo, a bHLH transcription factor SgbHLH19 was demonstrated to be the upstream regulator of SgPG1. Our study demonstrates that S. guianensis Al resistance mainly relies on BLCs, whose formation involves cell wall pectin epitope modification by SgPG1.
期刊介绍:
Publishing the best original research papers in all key areas of modern plant biology from the world"s leading laboratories, The Plant Journal provides a dynamic forum for this ever growing international research community.
Plant science research is now at the forefront of research in the biological sciences, with breakthroughs in our understanding of fundamental processes in plants matching those in other organisms. The impact of molecular genetics and the availability of model and crop species can be seen in all aspects of plant biology. For publication in The Plant Journal the research must provide a highly significant new contribution to our understanding of plants and be of general interest to the plant science community.