解密合金与金属纳米颗粒在掺氮碳纳米片中的协同作用,用于具有超长循环稳定性的锌-空气电池。

IF 10.7 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Baoyu Qing, Yijiang Liu, Duanguang Yang, Mei Yang, Bei Liu, Hongbiao Chen, Huaming Li
{"title":"解密合金与金属纳米颗粒在掺氮碳纳米片中的协同作用,用于具有超长循环稳定性的锌-空气电池。","authors":"Baoyu Qing, Yijiang Liu, Duanguang Yang, Mei Yang, Bei Liu, Hongbiao Chen, Huaming Li","doi":"10.1002/smtd.202401338","DOIUrl":null,"url":null,"abstract":"<p><p>The exploration of efficient, robust, and low-cost bifunctional electrocatalysts to drive the commercial application of Zn-air batteries (ZABs) is of great significance but still remains a challenge. Herein, a 1D coordination polymer (1D-CP) derived FeNi alloy & Co nanoparticles (NPs) co-implanted N-doped carbon nanosheets (FNC/NCS) is judiciously crafted and employed as a high-performance electrocatalyst for ultralong lifetime ZABs. The key to this strategy is the leveraging of metal-coordinated melamine to direct the pyrolysis of 1D-CP, enabling the in situ formation of well-dispersed FeNi alloy and Co NPs within the carbon matrix. The resulting FNC/NCS exhibits prominent oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) activity with a small overall oxygen potential difference (ΔE = 0.68 V). Density functional theory (DFT) simulation demonstrates that the synergistic effect between FeNi alloy and Co NPs can reduce energy barriers, promote electron transfer, and optimize the formation of crucial intermediates, thereby largely boost ORR/OER activity of FNC/NCS. The FNC/NCS-assembled ZABs possess high specific capacity, large power density, and ultralong cycling life in both aqueous (> 3300 h) and solid-state (150 h) electrolytes. This work provides a viable strategy for 1D-CP-derived bifunctional electrocatalysts and dissects the synergistic effect between different metal species, affording significant guidance for the development of renewable energy materials.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e2401338"},"PeriodicalIF":10.7000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Decrypting Synergy of Alloy & Metal Nanoparticles Within Nitrogen-Doped Carbon Nanosheets for Zn-Air Batteries with Ultralong Cycling Stability.\",\"authors\":\"Baoyu Qing, Yijiang Liu, Duanguang Yang, Mei Yang, Bei Liu, Hongbiao Chen, Huaming Li\",\"doi\":\"10.1002/smtd.202401338\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The exploration of efficient, robust, and low-cost bifunctional electrocatalysts to drive the commercial application of Zn-air batteries (ZABs) is of great significance but still remains a challenge. Herein, a 1D coordination polymer (1D-CP) derived FeNi alloy & Co nanoparticles (NPs) co-implanted N-doped carbon nanosheets (FNC/NCS) is judiciously crafted and employed as a high-performance electrocatalyst for ultralong lifetime ZABs. The key to this strategy is the leveraging of metal-coordinated melamine to direct the pyrolysis of 1D-CP, enabling the in situ formation of well-dispersed FeNi alloy and Co NPs within the carbon matrix. The resulting FNC/NCS exhibits prominent oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) activity with a small overall oxygen potential difference (ΔE = 0.68 V). Density functional theory (DFT) simulation demonstrates that the synergistic effect between FeNi alloy and Co NPs can reduce energy barriers, promote electron transfer, and optimize the formation of crucial intermediates, thereby largely boost ORR/OER activity of FNC/NCS. The FNC/NCS-assembled ZABs possess high specific capacity, large power density, and ultralong cycling life in both aqueous (> 3300 h) and solid-state (150 h) electrolytes. This work provides a viable strategy for 1D-CP-derived bifunctional electrocatalysts and dissects the synergistic effect between different metal species, affording significant guidance for the development of renewable energy materials.</p>\",\"PeriodicalId\":229,\"journal\":{\"name\":\"Small Methods\",\"volume\":\" \",\"pages\":\"e2401338\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2024-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small Methods\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/smtd.202401338\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Methods","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smtd.202401338","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

探索高效、稳健、低成本的双功能电催化剂以推动锌-空气电池(ZABs)的商业化应用意义重大,但仍是一项挑战。在本文中,一种一维配位聚合物(1D-CP)衍生的铁镍合金和钴纳米颗粒(NPs)共同植入了掺杂氮的碳纳米片(FNC/NCS),经过精心制作,被用作超长寿命 ZAB 的高性能电催化剂。这一策略的关键在于利用金属配位三聚氰胺来引导一维碳粉的热解,从而在碳基质中原位形成分散良好的铁镍合金和钴氮氧化物。由此产生的 FNC/NCS 具有显著的氧还原反应(ORR)和氧进化反应(OER)活性,且总体氧电位差较小(ΔE = 0.68 V)。密度泛函理论(DFT)模拟表明,FeNi 合金与 Co NPs 之间的协同效应可以降低能垒、促进电子转移并优化关键中间产物的形成,从而大大提高 FNC/NCS 的 ORR/OER 活性。FNC/NCS 组装的 ZAB 在水性(大于 3300 小时)和固态(150 小时)电解质中都具有高比容量、大功率密度和超长循环寿命。这项工作为 1D-CP 衍生的双功能电催化剂提供了一种可行的策略,并剖析了不同金属物种之间的协同效应,为可再生能源材料的开发提供了重要指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Decrypting Synergy of Alloy & Metal Nanoparticles Within Nitrogen-Doped Carbon Nanosheets for Zn-Air Batteries with Ultralong Cycling Stability.

The exploration of efficient, robust, and low-cost bifunctional electrocatalysts to drive the commercial application of Zn-air batteries (ZABs) is of great significance but still remains a challenge. Herein, a 1D coordination polymer (1D-CP) derived FeNi alloy & Co nanoparticles (NPs) co-implanted N-doped carbon nanosheets (FNC/NCS) is judiciously crafted and employed as a high-performance electrocatalyst for ultralong lifetime ZABs. The key to this strategy is the leveraging of metal-coordinated melamine to direct the pyrolysis of 1D-CP, enabling the in situ formation of well-dispersed FeNi alloy and Co NPs within the carbon matrix. The resulting FNC/NCS exhibits prominent oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) activity with a small overall oxygen potential difference (ΔE = 0.68 V). Density functional theory (DFT) simulation demonstrates that the synergistic effect between FeNi alloy and Co NPs can reduce energy barriers, promote electron transfer, and optimize the formation of crucial intermediates, thereby largely boost ORR/OER activity of FNC/NCS. The FNC/NCS-assembled ZABs possess high specific capacity, large power density, and ultralong cycling life in both aqueous (> 3300 h) and solid-state (150 h) electrolytes. This work provides a viable strategy for 1D-CP-derived bifunctional electrocatalysts and dissects the synergistic effect between different metal species, affording significant guidance for the development of renewable energy materials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Small Methods
Small Methods Materials Science-General Materials Science
CiteScore
17.40
自引率
1.60%
发文量
347
期刊介绍: Small Methods is a multidisciplinary journal that publishes groundbreaking research on methods relevant to nano- and microscale research. It welcomes contributions from the fields of materials science, biomedical science, chemistry, and physics, showcasing the latest advancements in experimental techniques. With a notable 2022 Impact Factor of 12.4 (Journal Citation Reports, Clarivate Analytics, 2023), Small Methods is recognized for its significant impact on the scientific community. The online ISSN for Small Methods is 2366-9608.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信