{"title":"用于高效太阳能驱动水净化的生物灵感磁性软机器鱼。","authors":"Jingjing Qin, Jiahao Li, Guozheng Yang, Kaibin Chu, Leiqian Zhang, Fangping Xu, Yujie Chen, Yaoxin Zhang, Wei Fan, Johan Hofkens, Bo Li, YinBo Zhu, HengAn Wu, Swee Ching Tan, Feili Lai, Tianxi Liu","doi":"10.1002/smtd.202400880","DOIUrl":null,"url":null,"abstract":"<p><p>Solar-driven water evaporation is a promising solution for global water scarcity but is still facing challenges due to its substantial energy requirements. Here, a magnetic soft robotic bionic fish is developed by combining magnetic nanoparticles (Fe<sub>3</sub>O<sub>4</sub>), poly(N-isopropylacrylamide), and carboxymethyl chitosan. This bionic fish can release liquid water through hydrophilic/hydrophobic phase transition and dramatically reduce energy consumption. The introduced Fe<sub>3</sub>O<sub>4</sub> nanoparticles endow the bionic fish with magnetic actuation capability, allowing for remote operation and recovery. Additionally, the magnetic actuation process accelerates the water absorption rate of the bionic fish as confirmed by the finite element simulations. The results demonstrate that bionic fish can effectively remove not only organic molecular dyes dissolved in water but also harmful microbes and insoluble microparticles from natural lakes. Moreover, the bionic fish maintains a good purification efficiency even after five recycling cycles. Furthermore, the bionic fish possesses other functions, such as salt purification and salt rejection. Finally, the mechanism of water purification is explained in conjunction with molecular dynamics calculations. This work provides a new approach for efficient solar-energy water purification by phase transition behavior in soft robotics.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e2400880"},"PeriodicalIF":10.7000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Bio-Inspired Magnetic Soft Robotic Fish for Efficient Solar-Energy Driven Water Purification.\",\"authors\":\"Jingjing Qin, Jiahao Li, Guozheng Yang, Kaibin Chu, Leiqian Zhang, Fangping Xu, Yujie Chen, Yaoxin Zhang, Wei Fan, Johan Hofkens, Bo Li, YinBo Zhu, HengAn Wu, Swee Ching Tan, Feili Lai, Tianxi Liu\",\"doi\":\"10.1002/smtd.202400880\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Solar-driven water evaporation is a promising solution for global water scarcity but is still facing challenges due to its substantial energy requirements. Here, a magnetic soft robotic bionic fish is developed by combining magnetic nanoparticles (Fe<sub>3</sub>O<sub>4</sub>), poly(N-isopropylacrylamide), and carboxymethyl chitosan. This bionic fish can release liquid water through hydrophilic/hydrophobic phase transition and dramatically reduce energy consumption. The introduced Fe<sub>3</sub>O<sub>4</sub> nanoparticles endow the bionic fish with magnetic actuation capability, allowing for remote operation and recovery. Additionally, the magnetic actuation process accelerates the water absorption rate of the bionic fish as confirmed by the finite element simulations. The results demonstrate that bionic fish can effectively remove not only organic molecular dyes dissolved in water but also harmful microbes and insoluble microparticles from natural lakes. Moreover, the bionic fish maintains a good purification efficiency even after five recycling cycles. Furthermore, the bionic fish possesses other functions, such as salt purification and salt rejection. Finally, the mechanism of water purification is explained in conjunction with molecular dynamics calculations. This work provides a new approach for efficient solar-energy water purification by phase transition behavior in soft robotics.</p>\",\"PeriodicalId\":229,\"journal\":{\"name\":\"Small Methods\",\"volume\":\" \",\"pages\":\"e2400880\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2024-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small Methods\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/smtd.202400880\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Methods","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smtd.202400880","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
A Bio-Inspired Magnetic Soft Robotic Fish for Efficient Solar-Energy Driven Water Purification.
Solar-driven water evaporation is a promising solution for global water scarcity but is still facing challenges due to its substantial energy requirements. Here, a magnetic soft robotic bionic fish is developed by combining magnetic nanoparticles (Fe3O4), poly(N-isopropylacrylamide), and carboxymethyl chitosan. This bionic fish can release liquid water through hydrophilic/hydrophobic phase transition and dramatically reduce energy consumption. The introduced Fe3O4 nanoparticles endow the bionic fish with magnetic actuation capability, allowing for remote operation and recovery. Additionally, the magnetic actuation process accelerates the water absorption rate of the bionic fish as confirmed by the finite element simulations. The results demonstrate that bionic fish can effectively remove not only organic molecular dyes dissolved in water but also harmful microbes and insoluble microparticles from natural lakes. Moreover, the bionic fish maintains a good purification efficiency even after five recycling cycles. Furthermore, the bionic fish possesses other functions, such as salt purification and salt rejection. Finally, the mechanism of water purification is explained in conjunction with molecular dynamics calculations. This work provides a new approach for efficient solar-energy water purification by phase transition behavior in soft robotics.
Small MethodsMaterials Science-General Materials Science
CiteScore
17.40
自引率
1.60%
发文量
347
期刊介绍:
Small Methods is a multidisciplinary journal that publishes groundbreaking research on methods relevant to nano- and microscale research. It welcomes contributions from the fields of materials science, biomedical science, chemistry, and physics, showcasing the latest advancements in experimental techniques.
With a notable 2022 Impact Factor of 12.4 (Journal Citation Reports, Clarivate Analytics, 2023), Small Methods is recognized for its significant impact on the scientific community.
The online ISSN for Small Methods is 2366-9608.