Gary C. Longo, Jeremiah J. Minich, Nicholas Allsing, Kelsey James, Ella S. Adams-Herrmann, Wes Larson, Nolan Hartwick, Tiffany Duong, Barbara Muhling, Todd P. Michael, Matthew T. Craig
{"title":"穿越太平洋:基因组学揭示了加利福尼亚洋流大型海洋生态系统中日本沙丁鱼(Sardinops melanosticta)的存在。","authors":"Gary C. Longo, Jeremiah J. Minich, Nicholas Allsing, Kelsey James, Ella S. Adams-Herrmann, Wes Larson, Nolan Hartwick, Tiffany Duong, Barbara Muhling, Todd P. Michael, Matthew T. Craig","doi":"10.1111/mec.17561","DOIUrl":null,"url":null,"abstract":"<p>Recent increases in frequency and intensity of warm water anomalies and marine heatwaves have led to shifts in species ranges and assemblages. Genomic tools can be instrumental in detecting such shifts. In the early stages of a project assessing population genetic structure in Pacific Sardine (<i>Sardinops sagax</i>), we detected the presence of Japanese Sardine (<i>Sardinops melanosticta</i>) along the west coast of North America for the first time. We assembled a high quality, chromosome-scale reference genome of the Pacific Sardine and generated low coverage, whole genome sequence (lcWGS) data for 345 sardine collected in the California Current Large Marine Ecosystem (CCLME) in 2021 and 2022. Fifty individuals sampled in 2022 were identified as Japanese Sardine based on strong differentiation observed in lcWGS SNP and full mitogenome data. Although we detected a single case of mitochondrial introgression, we did not observe evidence for recent hybridization events. These findings change our understanding of <i>Sardinops</i> spp. distribution and dispersal in the Pacific and highlight the importance of long-term monitoring programs.</p>","PeriodicalId":210,"journal":{"name":"Molecular Ecology","volume":"33 22","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/mec.17561","citationCount":"0","resultStr":"{\"title\":\"Crossing the Pacific: Genomics Reveals the Presence of Japanese Sardine (Sardinops melanosticta) in the California Current Large Marine Ecosystem\",\"authors\":\"Gary C. Longo, Jeremiah J. Minich, Nicholas Allsing, Kelsey James, Ella S. Adams-Herrmann, Wes Larson, Nolan Hartwick, Tiffany Duong, Barbara Muhling, Todd P. Michael, Matthew T. Craig\",\"doi\":\"10.1111/mec.17561\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Recent increases in frequency and intensity of warm water anomalies and marine heatwaves have led to shifts in species ranges and assemblages. Genomic tools can be instrumental in detecting such shifts. In the early stages of a project assessing population genetic structure in Pacific Sardine (<i>Sardinops sagax</i>), we detected the presence of Japanese Sardine (<i>Sardinops melanosticta</i>) along the west coast of North America for the first time. We assembled a high quality, chromosome-scale reference genome of the Pacific Sardine and generated low coverage, whole genome sequence (lcWGS) data for 345 sardine collected in the California Current Large Marine Ecosystem (CCLME) in 2021 and 2022. Fifty individuals sampled in 2022 were identified as Japanese Sardine based on strong differentiation observed in lcWGS SNP and full mitogenome data. Although we detected a single case of mitochondrial introgression, we did not observe evidence for recent hybridization events. These findings change our understanding of <i>Sardinops</i> spp. distribution and dispersal in the Pacific and highlight the importance of long-term monitoring programs.</p>\",\"PeriodicalId\":210,\"journal\":{\"name\":\"Molecular Ecology\",\"volume\":\"33 22\",\"pages\":\"\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/mec.17561\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Ecology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/mec.17561\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Ecology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/mec.17561","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Crossing the Pacific: Genomics Reveals the Presence of Japanese Sardine (Sardinops melanosticta) in the California Current Large Marine Ecosystem
Recent increases in frequency and intensity of warm water anomalies and marine heatwaves have led to shifts in species ranges and assemblages. Genomic tools can be instrumental in detecting such shifts. In the early stages of a project assessing population genetic structure in Pacific Sardine (Sardinops sagax), we detected the presence of Japanese Sardine (Sardinops melanosticta) along the west coast of North America for the first time. We assembled a high quality, chromosome-scale reference genome of the Pacific Sardine and generated low coverage, whole genome sequence (lcWGS) data for 345 sardine collected in the California Current Large Marine Ecosystem (CCLME) in 2021 and 2022. Fifty individuals sampled in 2022 were identified as Japanese Sardine based on strong differentiation observed in lcWGS SNP and full mitogenome data. Although we detected a single case of mitochondrial introgression, we did not observe evidence for recent hybridization events. These findings change our understanding of Sardinops spp. distribution and dispersal in the Pacific and highlight the importance of long-term monitoring programs.
期刊介绍:
Molecular Ecology publishes papers that utilize molecular genetic techniques to address consequential questions in ecology, evolution, behaviour and conservation. Studies may employ neutral markers for inference about ecological and evolutionary processes or examine ecologically important genes and their products directly. We discourage papers that are primarily descriptive and are relevant only to the taxon being studied. Papers reporting on molecular marker development, molecular diagnostics, barcoding, or DNA taxonomy, or technical methods should be re-directed to our sister journal, Molecular Ecology Resources. Likewise, papers with a strongly applied focus should be submitted to Evolutionary Applications. Research areas of interest to Molecular Ecology include:
* population structure and phylogeography
* reproductive strategies
* relatedness and kin selection
* sex allocation
* population genetic theory
* analytical methods development
* conservation genetics
* speciation genetics
* microbial biodiversity
* evolutionary dynamics of QTLs
* ecological interactions
* molecular adaptation and environmental genomics
* impact of genetically modified organisms