Qiuyue Li, Jingjing Liu, Ze Wu, Aomeng Deng, Jiani Liu, Tian Chen, Jianlong Wei, Yiqiong Zhang, Hanwen Liu
{"title":"用于尿素合成的电催化 C-N 偶联的最新进展。","authors":"Qiuyue Li, Jingjing Liu, Ze Wu, Aomeng Deng, Jiani Liu, Tian Chen, Jianlong Wei, Yiqiong Zhang, Hanwen Liu","doi":"10.1002/cssc.202401865","DOIUrl":null,"url":null,"abstract":"<p><p>Urea, one of the most widely used nitrogen-containing fertilizers globally, is essential for sustainable agriculture. Improving its production is crucial for meeting the increasing demand for fertilizers. Electrocatalytic co-reduction of CO₂ and nitrogenous compounds (NO₂<sup>-</sup>/NO₃<sup>-</sup>) has emerged as a promising strategy for green and energy-efficient urea synthesis. However, challenges such as slow reaction kinetics and complex multi-step electron transfers have hindered the development of efficient urea synthesis methods. This review explores recent advances in the electrocatalytic C-N coupling process, focusing on bimetallic catalysts, metal oxide/hydroxide catalysts, and carbon-based catalysts. The review also discusses the future prospects of designing effective catalysts for electrocatalytic C-N coupling to improve urea synthesis.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":" ","pages":"e202401865"},"PeriodicalIF":7.5000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recent Advances in Electrocatalytic C-N Coupling for Urea Synthesis.\",\"authors\":\"Qiuyue Li, Jingjing Liu, Ze Wu, Aomeng Deng, Jiani Liu, Tian Chen, Jianlong Wei, Yiqiong Zhang, Hanwen Liu\",\"doi\":\"10.1002/cssc.202401865\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Urea, one of the most widely used nitrogen-containing fertilizers globally, is essential for sustainable agriculture. Improving its production is crucial for meeting the increasing demand for fertilizers. Electrocatalytic co-reduction of CO₂ and nitrogenous compounds (NO₂<sup>-</sup>/NO₃<sup>-</sup>) has emerged as a promising strategy for green and energy-efficient urea synthesis. However, challenges such as slow reaction kinetics and complex multi-step electron transfers have hindered the development of efficient urea synthesis methods. This review explores recent advances in the electrocatalytic C-N coupling process, focusing on bimetallic catalysts, metal oxide/hydroxide catalysts, and carbon-based catalysts. The review also discusses the future prospects of designing effective catalysts for electrocatalytic C-N coupling to improve urea synthesis.</p>\",\"PeriodicalId\":149,\"journal\":{\"name\":\"ChemSusChem\",\"volume\":\" \",\"pages\":\"e202401865\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2024-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemSusChem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/cssc.202401865\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cssc.202401865","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Recent Advances in Electrocatalytic C-N Coupling for Urea Synthesis.
Urea, one of the most widely used nitrogen-containing fertilizers globally, is essential for sustainable agriculture. Improving its production is crucial for meeting the increasing demand for fertilizers. Electrocatalytic co-reduction of CO₂ and nitrogenous compounds (NO₂-/NO₃-) has emerged as a promising strategy for green and energy-efficient urea synthesis. However, challenges such as slow reaction kinetics and complex multi-step electron transfers have hindered the development of efficient urea synthesis methods. This review explores recent advances in the electrocatalytic C-N coupling process, focusing on bimetallic catalysts, metal oxide/hydroxide catalysts, and carbon-based catalysts. The review also discusses the future prospects of designing effective catalysts for electrocatalytic C-N coupling to improve urea synthesis.
期刊介绍:
ChemSusChem
Impact Factor (2016): 7.226
Scope:
Interdisciplinary journal
Focuses on research at the interface of chemistry and sustainability
Features the best research on sustainability and energy
Areas Covered:
Chemistry
Materials Science
Chemical Engineering
Biotechnology