用于可持续能源存储的快速、高稳定性水性钙离子电池。

IF 7.5 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ChemSusChem Pub Date : 2024-10-23 DOI:10.1002/cssc.202401469
Raphael L Streng, Samuel Reiser, Sabrina Wager, Nykola Pommer, Aliaksandr S Bandarenka
{"title":"用于可持续能源存储的快速、高稳定性水性钙离子电池。","authors":"Raphael L Streng, Samuel Reiser, Sabrina Wager, Nykola Pommer, Aliaksandr S Bandarenka","doi":"10.1002/cssc.202401469","DOIUrl":null,"url":null,"abstract":"<p><p>Aqueous alkali-ion batteries are gaining traction as a low-cost, sustainable alternative to conventional organic lithium-ion batteries. However, the rapid degradation of commonly used electrode materials, such as Prussian Blue Analogs and carbonyl-based organic compounds, continues to challenge the economic viability of these devices. While stability issues can be addressed by employing highly concentrated water-in-salt electrolytes, this approach often requires expensive and, in many cases, fluorinated salts. Here, we show that replacing monovalent K<sup>+</sup> ions with divalent Ca<sup>2+</sup> ions in the electrolyte significantly enhances the stability of both a copper hexacyanoferrate cathode and a polyimide anode. These findings have direct implications for developing an optimized aqueous Ca-ion battery that demonstrates exceptional fast-charging capabilities and ultra-long cycle life and points toward applying Ca-based batteries for large-scale energy storage.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":" ","pages":"e202401469"},"PeriodicalIF":7.5000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Fast and Highly Stable Aqueous Calcium-Ion Battery for Sustainable Energy Storage.\",\"authors\":\"Raphael L Streng, Samuel Reiser, Sabrina Wager, Nykola Pommer, Aliaksandr S Bandarenka\",\"doi\":\"10.1002/cssc.202401469\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Aqueous alkali-ion batteries are gaining traction as a low-cost, sustainable alternative to conventional organic lithium-ion batteries. However, the rapid degradation of commonly used electrode materials, such as Prussian Blue Analogs and carbonyl-based organic compounds, continues to challenge the economic viability of these devices. While stability issues can be addressed by employing highly concentrated water-in-salt electrolytes, this approach often requires expensive and, in many cases, fluorinated salts. Here, we show that replacing monovalent K<sup>+</sup> ions with divalent Ca<sup>2+</sup> ions in the electrolyte significantly enhances the stability of both a copper hexacyanoferrate cathode and a polyimide anode. These findings have direct implications for developing an optimized aqueous Ca-ion battery that demonstrates exceptional fast-charging capabilities and ultra-long cycle life and points toward applying Ca-based batteries for large-scale energy storage.</p>\",\"PeriodicalId\":149,\"journal\":{\"name\":\"ChemSusChem\",\"volume\":\" \",\"pages\":\"e202401469\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2024-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemSusChem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/cssc.202401469\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cssc.202401469","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

作为传统有机锂离子电池的一种低成本、可持续的替代品,水基锂离子电池正受到越来越多的关注。然而,常用电极材料(如普鲁士蓝类似物和羰基有机化合物)的快速降解继续对这些设备的经济可行性提出挑战。虽然可以通过采用高浓度盐包水型电解质来解决稳定性问题,但这种方法通常需要昂贵的盐,而且在很多情况下需要含氟盐。在这里,我们展示了用二价 Ca2+ 离子取代电解液中的一价 K+ 离子,可显著提高六氰基铁酸铜阴极和聚酰亚胺阳极的稳定性。这些发现对开发优化的水性钙离子电池具有直接意义,因为这种电池具有卓越的快速充电能力和超长的循环寿命,并有望将钙基电池应用于大规模能源存储。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Fast and Highly Stable Aqueous Calcium-Ion Battery for Sustainable Energy Storage.

Aqueous alkali-ion batteries are gaining traction as a low-cost, sustainable alternative to conventional organic lithium-ion batteries. However, the rapid degradation of commonly used electrode materials, such as Prussian Blue Analogs and carbonyl-based organic compounds, continues to challenge the economic viability of these devices. While stability issues can be addressed by employing highly concentrated water-in-salt electrolytes, this approach often requires expensive and, in many cases, fluorinated salts. Here, we show that replacing monovalent K+ ions with divalent Ca2+ ions in the electrolyte significantly enhances the stability of both a copper hexacyanoferrate cathode and a polyimide anode. These findings have direct implications for developing an optimized aqueous Ca-ion battery that demonstrates exceptional fast-charging capabilities and ultra-long cycle life and points toward applying Ca-based batteries for large-scale energy storage.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ChemSusChem
ChemSusChem 化学-化学综合
CiteScore
15.80
自引率
4.80%
发文量
555
审稿时长
1.8 months
期刊介绍: ChemSusChem Impact Factor (2016): 7.226 Scope: Interdisciplinary journal Focuses on research at the interface of chemistry and sustainability Features the best research on sustainability and energy Areas Covered: Chemistry Materials Science Chemical Engineering Biotechnology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信