Kai Xu, Zheng-Yu Huang, Chen-Yi Sun, Dr. Jiang Pan, Prof. Dr. Chun-Xiu Li, Prof. Dr. Jian-He Xu
{"title":"(+)-3,6-环氧马来酰亚胺:一种由 CYP450 BM3-139-3 及其变体催化的 (+)-Bicyclogermacrene 氧化作用的新型衍生物。","authors":"Kai Xu, Zheng-Yu Huang, Chen-Yi Sun, Dr. Jiang Pan, Prof. Dr. Chun-Xiu Li, Prof. Dr. Jian-He Xu","doi":"10.1002/cbic.202400410","DOIUrl":null,"url":null,"abstract":"<p>(+)-Bicyclogermacrene is a sesquiterpene compound found in various plant essential oils and serves as a crucial precursor for multiple biologically active compounds. Many derivatives of (+)-bicyclogermacrene have been shown to exhibit valuable bioactivities. Cytochrome P450 BM3 from <i>Bacillus megaterium</i> can catalyze a variety of substrates and different types of oxidation reactions, making it become a powerful tool for oxidizing terpenes. In this study, we employed P450 BM3-139-3 variant for <i>in vitro</i> enzymatic oxidation of (+)-bicyclogermacrene, identifying a novel oxidized derivative of (+)-bicyclogermacrene, named (+)-3,6-epoxymaaliane, and an unknown sesquiterpenoid in a ratio of 70 : 30 (by GC peak area). (+)-3,6-Epoxymaaliane showed demonstrated antibacterial activities toward <i>Escherichia coli</i> and <i>Staphylococcus aureus</i>. To obtain a better variant of the monooxygenase with a high selectivity to form (+)-3,6-epoxymaaliane, we combined alanine scanning with the “Focused Rational Iterative Site-Specific Mutagenesis” (FRISM) strategy to modify the closest residues within 5 Å radius surrounding the substrate to create a small-but-smart library of mutants. Consequently, it gave an optimal variant with 1.6-fold improvement, in a turnover number (TON) of up to 964 toward (+)-3,6-epoxymaaliane production with a higher product selectivity.</p>","PeriodicalId":140,"journal":{"name":"ChemBioChem","volume":"25 22","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"(+)-3,6-Epoxymaaliane: A Novel Derivative of (+)-Bicyclogermacrene Oxidation Catalyzed by CYP450 BM3-139-3 and Its Variants\",\"authors\":\"Kai Xu, Zheng-Yu Huang, Chen-Yi Sun, Dr. Jiang Pan, Prof. Dr. Chun-Xiu Li, Prof. Dr. Jian-He Xu\",\"doi\":\"10.1002/cbic.202400410\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>(+)-Bicyclogermacrene is a sesquiterpene compound found in various plant essential oils and serves as a crucial precursor for multiple biologically active compounds. Many derivatives of (+)-bicyclogermacrene have been shown to exhibit valuable bioactivities. Cytochrome P450 BM3 from <i>Bacillus megaterium</i> can catalyze a variety of substrates and different types of oxidation reactions, making it become a powerful tool for oxidizing terpenes. In this study, we employed P450 BM3-139-3 variant for <i>in vitro</i> enzymatic oxidation of (+)-bicyclogermacrene, identifying a novel oxidized derivative of (+)-bicyclogermacrene, named (+)-3,6-epoxymaaliane, and an unknown sesquiterpenoid in a ratio of 70 : 30 (by GC peak area). (+)-3,6-Epoxymaaliane showed demonstrated antibacterial activities toward <i>Escherichia coli</i> and <i>Staphylococcus aureus</i>. To obtain a better variant of the monooxygenase with a high selectivity to form (+)-3,6-epoxymaaliane, we combined alanine scanning with the “Focused Rational Iterative Site-Specific Mutagenesis” (FRISM) strategy to modify the closest residues within 5 Å radius surrounding the substrate to create a small-but-smart library of mutants. Consequently, it gave an optimal variant with 1.6-fold improvement, in a turnover number (TON) of up to 964 toward (+)-3,6-epoxymaaliane production with a higher product selectivity.</p>\",\"PeriodicalId\":140,\"journal\":{\"name\":\"ChemBioChem\",\"volume\":\"25 22\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemBioChem\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cbic.202400410\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemBioChem","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cbic.202400410","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
(+)-3,6-Epoxymaaliane: A Novel Derivative of (+)-Bicyclogermacrene Oxidation Catalyzed by CYP450 BM3-139-3 and Its Variants
(+)-Bicyclogermacrene is a sesquiterpene compound found in various plant essential oils and serves as a crucial precursor for multiple biologically active compounds. Many derivatives of (+)-bicyclogermacrene have been shown to exhibit valuable bioactivities. Cytochrome P450 BM3 from Bacillus megaterium can catalyze a variety of substrates and different types of oxidation reactions, making it become a powerful tool for oxidizing terpenes. In this study, we employed P450 BM3-139-3 variant for in vitro enzymatic oxidation of (+)-bicyclogermacrene, identifying a novel oxidized derivative of (+)-bicyclogermacrene, named (+)-3,6-epoxymaaliane, and an unknown sesquiterpenoid in a ratio of 70 : 30 (by GC peak area). (+)-3,6-Epoxymaaliane showed demonstrated antibacterial activities toward Escherichia coli and Staphylococcus aureus. To obtain a better variant of the monooxygenase with a high selectivity to form (+)-3,6-epoxymaaliane, we combined alanine scanning with the “Focused Rational Iterative Site-Specific Mutagenesis” (FRISM) strategy to modify the closest residues within 5 Å radius surrounding the substrate to create a small-but-smart library of mutants. Consequently, it gave an optimal variant with 1.6-fold improvement, in a turnover number (TON) of up to 964 toward (+)-3,6-epoxymaaliane production with a higher product selectivity.
期刊介绍:
ChemBioChem (Impact Factor 2018: 2.641) publishes important breakthroughs across all areas at the interface of chemistry and biology, including the fields of chemical biology, bioorganic chemistry, bioinorganic chemistry, synthetic biology, biocatalysis, bionanotechnology, and biomaterials. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies, and supported by the Asian Chemical Editorial Society (ACES).