Rahul Kumar Yadav, Darakshan Parveen, Bijan Mondal, Dipak Kumar Roy
{"title":"作为单核和双核硼化合物光致发光特性变化探针的间隔物的作用。","authors":"Rahul Kumar Yadav, Darakshan Parveen, Bijan Mondal, Dipak Kumar Roy","doi":"10.1002/asia.202401113","DOIUrl":null,"url":null,"abstract":"<p><p>A series of N,O donor-based mono- and binuclear four-coordinated boron complexes were synthesized. Depending on the substitution and spacer, these complexes exhibit intense blue, green and yellow emission in solution states. Notably, the fluorescence quantum yields (Φ<sub>F</sub>) and fluorescence decay (lifetime, τ) of mononuclear boron complexes (2 a-2 e) were higher than the binuclear boron complexes (2 f-2 k). The lowest lifetime and quantum yield in binuclear boron complexes were due to intramolecular rotation induced non radiative processes. The disulphide spacer-based boron complexes 2 i-2 k showed aggregation-caused quenching in the THF/H<sub>2</sub>O mixture whereas no other complexes were ACQ responsive. These complexes show large Stokes shift, one of them i. e. 2 e has the highest Stokes shift of 130 nm. Further, the electrochemical study suggests the presence of two redox incidences. Theoretical studies show close corroboration between the TD-DFT computed and experimentally measured absorption maxima as well as DFT (GIAO) calculated and experimentally measured <sup>11</sup>B NMR values. This complements the appropriate selection of the theoretical methods to shed light on the electronic transitions in the mono- and binuclear BF<sub>2</sub> complexes.</p>","PeriodicalId":145,"journal":{"name":"Chemistry - An Asian Journal","volume":" ","pages":"e202401113"},"PeriodicalIF":3.5000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Role of Spacers as a Probe in Variation of Photoluminescence Properties of Mono- and Bi-Nuclear Boron Compounds.\",\"authors\":\"Rahul Kumar Yadav, Darakshan Parveen, Bijan Mondal, Dipak Kumar Roy\",\"doi\":\"10.1002/asia.202401113\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A series of N,O donor-based mono- and binuclear four-coordinated boron complexes were synthesized. Depending on the substitution and spacer, these complexes exhibit intense blue, green and yellow emission in solution states. Notably, the fluorescence quantum yields (Φ<sub>F</sub>) and fluorescence decay (lifetime, τ) of mononuclear boron complexes (2 a-2 e) were higher than the binuclear boron complexes (2 f-2 k). The lowest lifetime and quantum yield in binuclear boron complexes were due to intramolecular rotation induced non radiative processes. The disulphide spacer-based boron complexes 2 i-2 k showed aggregation-caused quenching in the THF/H<sub>2</sub>O mixture whereas no other complexes were ACQ responsive. These complexes show large Stokes shift, one of them i. e. 2 e has the highest Stokes shift of 130 nm. Further, the electrochemical study suggests the presence of two redox incidences. Theoretical studies show close corroboration between the TD-DFT computed and experimentally measured absorption maxima as well as DFT (GIAO) calculated and experimentally measured <sup>11</sup>B NMR values. This complements the appropriate selection of the theoretical methods to shed light on the electronic transitions in the mono- and binuclear BF<sub>2</sub> complexes.</p>\",\"PeriodicalId\":145,\"journal\":{\"name\":\"Chemistry - An Asian Journal\",\"volume\":\" \",\"pages\":\"e202401113\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemistry - An Asian Journal\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/asia.202401113\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry - An Asian Journal","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/asia.202401113","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
The Role of Spacers as a Probe in Variation of Photoluminescence Properties of Mono- and Bi-Nuclear Boron Compounds.
A series of N,O donor-based mono- and binuclear four-coordinated boron complexes were synthesized. Depending on the substitution and spacer, these complexes exhibit intense blue, green and yellow emission in solution states. Notably, the fluorescence quantum yields (ΦF) and fluorescence decay (lifetime, τ) of mononuclear boron complexes (2 a-2 e) were higher than the binuclear boron complexes (2 f-2 k). The lowest lifetime and quantum yield in binuclear boron complexes were due to intramolecular rotation induced non radiative processes. The disulphide spacer-based boron complexes 2 i-2 k showed aggregation-caused quenching in the THF/H2O mixture whereas no other complexes were ACQ responsive. These complexes show large Stokes shift, one of them i. e. 2 e has the highest Stokes shift of 130 nm. Further, the electrochemical study suggests the presence of two redox incidences. Theoretical studies show close corroboration between the TD-DFT computed and experimentally measured absorption maxima as well as DFT (GIAO) calculated and experimentally measured 11B NMR values. This complements the appropriate selection of the theoretical methods to shed light on the electronic transitions in the mono- and binuclear BF2 complexes.
期刊介绍:
Chemistry—An Asian Journal is an international high-impact journal for chemistry in its broadest sense. The journal covers all aspects of chemistry from biochemistry through organic and inorganic chemistry to physical chemistry, including interdisciplinary topics.
Chemistry—An Asian Journal publishes Full Papers, Communications, and Focus Reviews.
A professional editorial team headed by Dr. Theresa Kueckmann and an Editorial Board (headed by Professor Susumu Kitagawa) ensure the highest quality of the peer-review process, the contents and the production of the journal.
Chemistry—An Asian Journal is published on behalf of the Asian Chemical Editorial Society (ACES), an association of numerous Asian chemical societies, and supported by the Gesellschaft Deutscher Chemiker (GDCh, German Chemical Society), ChemPubSoc Europe, and the Federation of Asian Chemical Societies (FACS).