触觉能力测试过程中的目光和手部行为--多媒体学习理论的最新进展。

IF 5.2 2区 教育学 Q1 EDUCATION, SCIENTIFIC DISCIPLINES
Michelle A Sveistrup, Jean Langlois, Timothy D Wilson
{"title":"触觉能力测试过程中的目光和手部行为--多媒体学习理论的最新进展。","authors":"Michelle A Sveistrup, Jean Langlois, Timothy D Wilson","doi":"10.1002/ase.2526","DOIUrl":null,"url":null,"abstract":"<p><p>The Cognitive Theory of Multimedia Learning (CTML) suggests humans learn through visual and auditory sensory channels. Haptics represent a third channel within CTML and a missing component for experiential learning. The objective was to measure visual and haptic behaviors during spatial tasks. The haptic abilities test (HAT) quantifies results in several realms, accuracy, time, and strategy. The HAT was completed under three sensory conditions using sight (S), haptics (H), and sight with haptics (SH). Subjects (n = 22, 13 females (F), 20-28 years) completed the MRT (10.6 ± 5.0, mean ± SD) and were classified as high or low spatial abilities scores with respect to mean MRT: high spatial abilities (HSA) (n = 12, 6F, MRT = 13.7 ± 3.0), and low spatial ability (LSA) groups (n = 10, 7F, MRT = 5.6 ± 2.0). Video recordings gaze and hand behaviors were compared between HSA and LSA groups across HAT conditions. The HSA group spent less time fixating on mirrored objects, an erroneous answer option, of HAT compared to the LSA group (11.0 ± 4.7 vs. 17.8 ± 7.3 s, p = 0.020) in S conditions. In haptic conditions, HSA utilized a hand-object interaction strategy characterized as palpation, significantly less than the LSA group (23.2 ± 16.0 vs. 43.1 ± 21.5 percent, p = 0.022). Before this study, it was unclear whether haptic sensory inputs appended to the mental schema models of the CTML. These data suggest that if spatial abilities are challenged, LSA persons both benefit and utilize strategies beyond the classic CTML framework by using their hands as a third input channel. This data suggest haptic behaviors offer a third type of sensory memory resulting in improved cognitive performance.</p>","PeriodicalId":124,"journal":{"name":"Anatomical Sciences Education","volume":" ","pages":""},"PeriodicalIF":5.2000,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gaze and hand behaviors during haptic abilities testing-An update to multimedia learning theory.\",\"authors\":\"Michelle A Sveistrup, Jean Langlois, Timothy D Wilson\",\"doi\":\"10.1002/ase.2526\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The Cognitive Theory of Multimedia Learning (CTML) suggests humans learn through visual and auditory sensory channels. Haptics represent a third channel within CTML and a missing component for experiential learning. The objective was to measure visual and haptic behaviors during spatial tasks. The haptic abilities test (HAT) quantifies results in several realms, accuracy, time, and strategy. The HAT was completed under three sensory conditions using sight (S), haptics (H), and sight with haptics (SH). Subjects (n = 22, 13 females (F), 20-28 years) completed the MRT (10.6 ± 5.0, mean ± SD) and were classified as high or low spatial abilities scores with respect to mean MRT: high spatial abilities (HSA) (n = 12, 6F, MRT = 13.7 ± 3.0), and low spatial ability (LSA) groups (n = 10, 7F, MRT = 5.6 ± 2.0). Video recordings gaze and hand behaviors were compared between HSA and LSA groups across HAT conditions. The HSA group spent less time fixating on mirrored objects, an erroneous answer option, of HAT compared to the LSA group (11.0 ± 4.7 vs. 17.8 ± 7.3 s, p = 0.020) in S conditions. In haptic conditions, HSA utilized a hand-object interaction strategy characterized as palpation, significantly less than the LSA group (23.2 ± 16.0 vs. 43.1 ± 21.5 percent, p = 0.022). Before this study, it was unclear whether haptic sensory inputs appended to the mental schema models of the CTML. These data suggest that if spatial abilities are challenged, LSA persons both benefit and utilize strategies beyond the classic CTML framework by using their hands as a third input channel. This data suggest haptic behaviors offer a third type of sensory memory resulting in improved cognitive performance.</p>\",\"PeriodicalId\":124,\"journal\":{\"name\":\"Anatomical Sciences Education\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2024-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anatomical Sciences Education\",\"FirstCategoryId\":\"95\",\"ListUrlMain\":\"https://doi.org/10.1002/ase.2526\",\"RegionNum\":2,\"RegionCategory\":\"教育学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"EDUCATION, SCIENTIFIC DISCIPLINES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anatomical Sciences Education","FirstCategoryId":"95","ListUrlMain":"https://doi.org/10.1002/ase.2526","RegionNum":2,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EDUCATION, SCIENTIFIC DISCIPLINES","Score":null,"Total":0}
引用次数: 0

摘要

多媒体学习认知理论(CTML)认为,人类通过视觉和听觉感官渠道进行学习。触觉是 CTML 的第三个渠道,也是体验式学习所缺少的组成部分。我们的目标是测量空间任务中的视觉和触觉行为。触觉能力测试(HAT)可量化准确性、时间和策略等几个方面的结果。触觉能力测试在三种感官条件下完成:视觉(S)、触觉(H)和视觉加触觉(SH)。受试者(n = 22,13 名女性(F),20-28 岁)完成了 MRT(10.6 ± 5.0,平均 ± SD),并根据平均 MRT 分为高空间能力组和低空间能力组:高空间能力组(HSA)(n = 12,6 名女性,MRT = 13.7 ± 3.0)和低空间能力组(LSA)(n = 10,7 名女性,MRT = 5.6 ± 2.0)。通过视频记录,比较了 HSA 组和 LSA 组在不同 HAT 条件下的注视和手部行为。与 LSA 组相比,在 S 条件下,HSA 组在 HAT 的错误答案选项镜像物体上花费的固定时间较少(11.0 ± 4.7 秒 vs. 17.8 ± 7.3 秒,p = 0.020)。在触觉条件下,HSA 使用以触觉为特征的手-物互动策略,明显少于 LSA 组(23.2 ± 16.0 vs. 43.1 ± 21.5%,p = 0.022)。在这项研究之前,人们还不清楚触觉输入是否会附加到 CTML 的心理图式模型中。这些数据表明,如果空间能力受到挑战,LSA 患者既能从中获益,又能通过使用双手作为第三输入渠道,利用经典 CTML 框架之外的策略。这些数据表明,触觉行为提供了第三种感官记忆,从而提高了认知能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Gaze and hand behaviors during haptic abilities testing-An update to multimedia learning theory.

The Cognitive Theory of Multimedia Learning (CTML) suggests humans learn through visual and auditory sensory channels. Haptics represent a third channel within CTML and a missing component for experiential learning. The objective was to measure visual and haptic behaviors during spatial tasks. The haptic abilities test (HAT) quantifies results in several realms, accuracy, time, and strategy. The HAT was completed under three sensory conditions using sight (S), haptics (H), and sight with haptics (SH). Subjects (n = 22, 13 females (F), 20-28 years) completed the MRT (10.6 ± 5.0, mean ± SD) and were classified as high or low spatial abilities scores with respect to mean MRT: high spatial abilities (HSA) (n = 12, 6F, MRT = 13.7 ± 3.0), and low spatial ability (LSA) groups (n = 10, 7F, MRT = 5.6 ± 2.0). Video recordings gaze and hand behaviors were compared between HSA and LSA groups across HAT conditions. The HSA group spent less time fixating on mirrored objects, an erroneous answer option, of HAT compared to the LSA group (11.0 ± 4.7 vs. 17.8 ± 7.3 s, p = 0.020) in S conditions. In haptic conditions, HSA utilized a hand-object interaction strategy characterized as palpation, significantly less than the LSA group (23.2 ± 16.0 vs. 43.1 ± 21.5 percent, p = 0.022). Before this study, it was unclear whether haptic sensory inputs appended to the mental schema models of the CTML. These data suggest that if spatial abilities are challenged, LSA persons both benefit and utilize strategies beyond the classic CTML framework by using their hands as a third input channel. This data suggest haptic behaviors offer a third type of sensory memory resulting in improved cognitive performance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Anatomical Sciences Education
Anatomical Sciences Education Anatomy/education-
CiteScore
10.30
自引率
39.70%
发文量
91
期刊介绍: Anatomical Sciences Education, affiliated with the American Association for Anatomy, serves as an international platform for sharing ideas, innovations, and research related to education in anatomical sciences. Covering gross anatomy, embryology, histology, and neurosciences, the journal addresses education at various levels, including undergraduate, graduate, post-graduate, allied health, medical (both allopathic and osteopathic), and dental. It fosters collaboration and discussion in the field of anatomical sciences education.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信