L. V. Tiihonen, M. P. Weir, A. J. Parnell, S. C. Boothroyd, D. W. Johnson, R. M. Dalgliesh, M. Bleuel, C. P. Duif, W. G. Bouwman, R. L. Thompson, K. S. Coleman, N. Clarke, W. A. Hamilton, A. L. Washington and S. R. Parnell
{"title":"利用自旋回波 SANS 揭示聚合物-碳纳米复合材料中的微观块体结构。","authors":"L. V. Tiihonen, M. P. Weir, A. J. Parnell, S. C. Boothroyd, D. W. Johnson, R. M. Dalgliesh, M. Bleuel, C. P. Duif, W. G. Bouwman, R. L. Thompson, K. S. Coleman, N. Clarke, W. A. Hamilton, A. L. Washington and S. R. Parnell","doi":"10.1039/D4SM00578C","DOIUrl":null,"url":null,"abstract":"<p >We have used spin-echo small-angle neutron scattering (SESANS) to probe the hierarchy of structures present in polymer–carbon nanocomposites, with length scales spanning over three orders of magnitude, from 10 nm to 16 μm. The data processing and reduction show a unified approach across two SESANS instruments (TU Delft and Larmor at the ISIS neutron source) and yield consistent data that are able to be modelled using well-established hierarchical models in freely available software such as SasView. Using this approach, we are able to extend the measured length scales by over an order of magnitude compared to traditional scattering methods. This yields information about the structure in the bulk that is inaccessible with conventional scattering techniques (SANS/SAXS) and points to a way for interrogating and investigating polymer nanocomposites routinely across multiple length scales.</p>","PeriodicalId":103,"journal":{"name":"Soft Matter","volume":" 43","pages":" 8663-8674"},"PeriodicalIF":2.9000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/sm/d4sm00578c?page=search","citationCount":"0","resultStr":"{\"title\":\"Revealing microscale bulk structures in polymer–carbon nanocomposites using spin-echo SANS\",\"authors\":\"L. V. Tiihonen, M. P. Weir, A. J. Parnell, S. C. Boothroyd, D. W. Johnson, R. M. Dalgliesh, M. Bleuel, C. P. Duif, W. G. Bouwman, R. L. Thompson, K. S. Coleman, N. Clarke, W. A. Hamilton, A. L. Washington and S. R. Parnell\",\"doi\":\"10.1039/D4SM00578C\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >We have used spin-echo small-angle neutron scattering (SESANS) to probe the hierarchy of structures present in polymer–carbon nanocomposites, with length scales spanning over three orders of magnitude, from 10 nm to 16 μm. The data processing and reduction show a unified approach across two SESANS instruments (TU Delft and Larmor at the ISIS neutron source) and yield consistent data that are able to be modelled using well-established hierarchical models in freely available software such as SasView. Using this approach, we are able to extend the measured length scales by over an order of magnitude compared to traditional scattering methods. This yields information about the structure in the bulk that is inaccessible with conventional scattering techniques (SANS/SAXS) and points to a way for interrogating and investigating polymer nanocomposites routinely across multiple length scales.</p>\",\"PeriodicalId\":103,\"journal\":{\"name\":\"Soft Matter\",\"volume\":\" 43\",\"pages\":\" 8663-8674\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2024/sm/d4sm00578c?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Soft Matter\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/sm/d4sm00578c\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soft Matter","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/sm/d4sm00578c","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Revealing microscale bulk structures in polymer–carbon nanocomposites using spin-echo SANS
We have used spin-echo small-angle neutron scattering (SESANS) to probe the hierarchy of structures present in polymer–carbon nanocomposites, with length scales spanning over three orders of magnitude, from 10 nm to 16 μm. The data processing and reduction show a unified approach across two SESANS instruments (TU Delft and Larmor at the ISIS neutron source) and yield consistent data that are able to be modelled using well-established hierarchical models in freely available software such as SasView. Using this approach, we are able to extend the measured length scales by over an order of magnitude compared to traditional scattering methods. This yields information about the structure in the bulk that is inaccessible with conventional scattering techniques (SANS/SAXS) and points to a way for interrogating and investigating polymer nanocomposites routinely across multiple length scales.
期刊介绍:
Soft Matter is an international journal published by the Royal Society of Chemistry using Engineering-Materials Science: A Synthesis as its research focus. It publishes original research articles, review articles, and synthesis articles related to this field, reporting the latest discoveries in the relevant theoretical, practical, and applied disciplines in a timely manner, and aims to promote the rapid exchange of scientific information in this subject area. The journal is an open access journal. The journal is an open access journal and has not been placed on the alert list in the last three years.