{"title":"关于 N-甲基-N-硝基苯胺热重排和酸催化重排的理论机理见解。","authors":"Shi Cheng, Chongjie Su, Tian Chen, Jiaxi Xu","doi":"10.1039/d4ob01449a","DOIUrl":null,"url":null,"abstract":"<p><p>The thermal and acid-catalyzed rearrangement mechanisms of <i>N</i>-methyl-<i>N</i>-nitroanilines were theoretically investigated <i>via</i> density functional theory (DFT) calculations for all possible proposed mechanisms. The results indicate that the thermal rearrangement of <i>N</i>-methyl-<i>N</i>-nitroanilines undergoes a radical pair complex mechanism through the homolysis of their N-N bond to generate a radical pair complex and the recombination of the radical pairs followed by aromatization. For the acid-catalyzed rearrangements, <i>N</i>-methyl-<i>N</i>-nitroanilines are first protonated on the nitrogen atom of their aniline moiety and then generate protonated <i>N</i>-methyl-<i>O</i>-nitroso-<i>N</i>-phenylhydroxylamines through a three-membered spirocyclic oxadiaziridine transition state. The <i>N</i>-protonated <i>N</i>-methyl-<i>O</i>-nitroso-<i>N</i>-phenylhydroxylamines favor homolytic dissociation to generate <i>N</i>-methylaniline cationic radical and nitrogen dioxide complexes, which further combine together and aromatize to afford protonated <i>N</i>-methyl-<i>o</i>-nitroanilines and <i>N</i>-methyl-<i>p</i>-nitroanilines, respectively. The radical pair complexes are more stable than the corresponding solvent-caged radical pairs. The thermal rearrangements require higher activation energy than the corresponding acid-catalyzed rearrangements.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Theoretical mechanistic insights on the thermal and acid-catalyzed rearrangements of <i>N</i>-methyl-<i>N</i>-nitroanilines.\",\"authors\":\"Shi Cheng, Chongjie Su, Tian Chen, Jiaxi Xu\",\"doi\":\"10.1039/d4ob01449a\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The thermal and acid-catalyzed rearrangement mechanisms of <i>N</i>-methyl-<i>N</i>-nitroanilines were theoretically investigated <i>via</i> density functional theory (DFT) calculations for all possible proposed mechanisms. The results indicate that the thermal rearrangement of <i>N</i>-methyl-<i>N</i>-nitroanilines undergoes a radical pair complex mechanism through the homolysis of their N-N bond to generate a radical pair complex and the recombination of the radical pairs followed by aromatization. For the acid-catalyzed rearrangements, <i>N</i>-methyl-<i>N</i>-nitroanilines are first protonated on the nitrogen atom of their aniline moiety and then generate protonated <i>N</i>-methyl-<i>O</i>-nitroso-<i>N</i>-phenylhydroxylamines through a three-membered spirocyclic oxadiaziridine transition state. The <i>N</i>-protonated <i>N</i>-methyl-<i>O</i>-nitroso-<i>N</i>-phenylhydroxylamines favor homolytic dissociation to generate <i>N</i>-methylaniline cationic radical and nitrogen dioxide complexes, which further combine together and aromatize to afford protonated <i>N</i>-methyl-<i>o</i>-nitroanilines and <i>N</i>-methyl-<i>p</i>-nitroanilines, respectively. The radical pair complexes are more stable than the corresponding solvent-caged radical pairs. The thermal rearrangements require higher activation energy than the corresponding acid-catalyzed rearrangements.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1039/d4ob01449a\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4ob01449a","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Theoretical mechanistic insights on the thermal and acid-catalyzed rearrangements of N-methyl-N-nitroanilines.
The thermal and acid-catalyzed rearrangement mechanisms of N-methyl-N-nitroanilines were theoretically investigated via density functional theory (DFT) calculations for all possible proposed mechanisms. The results indicate that the thermal rearrangement of N-methyl-N-nitroanilines undergoes a radical pair complex mechanism through the homolysis of their N-N bond to generate a radical pair complex and the recombination of the radical pairs followed by aromatization. For the acid-catalyzed rearrangements, N-methyl-N-nitroanilines are first protonated on the nitrogen atom of their aniline moiety and then generate protonated N-methyl-O-nitroso-N-phenylhydroxylamines through a three-membered spirocyclic oxadiaziridine transition state. The N-protonated N-methyl-O-nitroso-N-phenylhydroxylamines favor homolytic dissociation to generate N-methylaniline cationic radical and nitrogen dioxide complexes, which further combine together and aromatize to afford protonated N-methyl-o-nitroanilines and N-methyl-p-nitroanilines, respectively. The radical pair complexes are more stable than the corresponding solvent-caged radical pairs. The thermal rearrangements require higher activation energy than the corresponding acid-catalyzed rearrangements.