Qianqian Sun, Gang Wu, Xiaojian Tan, Qiang Zhang, Zhe Guo, Qiaoyan Pan, Guoqiang Liu, Peng Sun, Jiehua Wu, Jun Jiang
{"title":"高密度板条孪晶可提高 Bi2Te3 模块的热电转换效率。","authors":"Qianqian Sun, Gang Wu, Xiaojian Tan, Qiang Zhang, Zhe Guo, Qiaoyan Pan, Guoqiang Liu, Peng Sun, Jiehua Wu, Jun Jiang","doi":"10.1039/d4mh00977k","DOIUrl":null,"url":null,"abstract":"<p><p>Thermoelectric (TE) generators based on bismuth telluride (Bi<sub>2</sub>Te<sub>3</sub>) are recognized as a credible solution for low-grade heat harvesting. In this study, an combinative doping strategy of both the donor (Ag) and the acceptor (Ga) in Ag<sub>9</sub>GaTe<sub>6</sub> as dopants is developed to modulate the microstructure and improve the <i>ZT</i> value of p-type Bi<sub>0.4</sub>Sb<sub>1.6</sub>Te<sub>3</sub>. Specifically, the distribution of Ag and Ga in the matrix synergistically introduces multiple phonon scattering centers including lath twins, triple junction boundaries, and Sb-rich nanoprecipitates, leading to an obviously suppressed lattice thermal conductivity of 0.50 W m<sup>-1</sup> K<sup>-1</sup> at 300 K. At the same time, such unique microstructures of lath twins synergistically enhance the room-temperature power factor to 48.8 μW cm<sup>-1</sup> K<sup>-2</sup> and improve the Vickers hardness to 0.90 GPa. Consequently, a high <i>ZT</i> of 1.40 at 350 K and <i>ZT</i><sub>ave</sub> of 1.24 (300-500 K) are achieved in the Bi<sub>0.4</sub>Sb<sub>1.6</sub>Te<sub>3</sub> + 0.03 wt% Ag<sub>9</sub>GaTe<sub>6</sub> sample. Based on that, a competitive conversion efficiency of 6.5% at Δ<i>T</i> = 200 K is obtained in the constructed 17-couple TE module, which exhibits no significant change in the output property after 30 thermal cycle tests benefiting from the stable microstructure.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":" ","pages":""},"PeriodicalIF":12.2000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High density lath twins lead to high thermoelectric conversion efficiency in Bi<sub>2</sub>Te<sub>3</sub> modules.\",\"authors\":\"Qianqian Sun, Gang Wu, Xiaojian Tan, Qiang Zhang, Zhe Guo, Qiaoyan Pan, Guoqiang Liu, Peng Sun, Jiehua Wu, Jun Jiang\",\"doi\":\"10.1039/d4mh00977k\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Thermoelectric (TE) generators based on bismuth telluride (Bi<sub>2</sub>Te<sub>3</sub>) are recognized as a credible solution for low-grade heat harvesting. In this study, an combinative doping strategy of both the donor (Ag) and the acceptor (Ga) in Ag<sub>9</sub>GaTe<sub>6</sub> as dopants is developed to modulate the microstructure and improve the <i>ZT</i> value of p-type Bi<sub>0.4</sub>Sb<sub>1.6</sub>Te<sub>3</sub>. Specifically, the distribution of Ag and Ga in the matrix synergistically introduces multiple phonon scattering centers including lath twins, triple junction boundaries, and Sb-rich nanoprecipitates, leading to an obviously suppressed lattice thermal conductivity of 0.50 W m<sup>-1</sup> K<sup>-1</sup> at 300 K. At the same time, such unique microstructures of lath twins synergistically enhance the room-temperature power factor to 48.8 μW cm<sup>-1</sup> K<sup>-2</sup> and improve the Vickers hardness to 0.90 GPa. Consequently, a high <i>ZT</i> of 1.40 at 350 K and <i>ZT</i><sub>ave</sub> of 1.24 (300-500 K) are achieved in the Bi<sub>0.4</sub>Sb<sub>1.6</sub>Te<sub>3</sub> + 0.03 wt% Ag<sub>9</sub>GaTe<sub>6</sub> sample. Based on that, a competitive conversion efficiency of 6.5% at Δ<i>T</i> = 200 K is obtained in the constructed 17-couple TE module, which exhibits no significant change in the output property after 30 thermal cycle tests benefiting from the stable microstructure.</p>\",\"PeriodicalId\":87,\"journal\":{\"name\":\"Materials Horizons\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":12.2000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Horizons\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1039/d4mh00977k\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Horizons","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4mh00977k","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
基于碲化铋(Bi2Te3)的热电(TE)发电机被认为是低品位热量收集的可靠解决方案。在本研究中,开发了一种将 Ag9GaTe6 中的供体(Ag)和受体(Ga)作为掺杂剂的组合掺杂策略,以调节 p 型 Bi0.4Sb1.6Te3 的微观结构并提高其 ZT 值。具体来说,Ag 和 Ga 在基体中的分布协同引入了多个声子散射中心,包括板条孪晶、三重结界和富含 Sb 的纳米沉淀物,从而明显抑制了 300 K 时 0.50 W m-1 K-1 的晶格热导率。同时,板条孪晶这种独特的微结构协同将室温功率因数提高到 48.8 μW cm-1 K-2,并将维氏硬度提高到 0.90 GPa。因此,Bi0.4Sb1.6Te3 + 0.03 wt% Ag9GaTe6 样品在 350 K 时的 ZT 值高达 1.40,ZTave 值达 1.24(300-500 K)。在此基础上,所构建的 17 个耦合 TE 模块在 ΔT = 200 K 时的转换效率达到了 6.5%,得益于稳定的微观结构,经过 30 次热循环测试后,其输出特性没有发生显著变化。
High density lath twins lead to high thermoelectric conversion efficiency in Bi2Te3 modules.
Thermoelectric (TE) generators based on bismuth telluride (Bi2Te3) are recognized as a credible solution for low-grade heat harvesting. In this study, an combinative doping strategy of both the donor (Ag) and the acceptor (Ga) in Ag9GaTe6 as dopants is developed to modulate the microstructure and improve the ZT value of p-type Bi0.4Sb1.6Te3. Specifically, the distribution of Ag and Ga in the matrix synergistically introduces multiple phonon scattering centers including lath twins, triple junction boundaries, and Sb-rich nanoprecipitates, leading to an obviously suppressed lattice thermal conductivity of 0.50 W m-1 K-1 at 300 K. At the same time, such unique microstructures of lath twins synergistically enhance the room-temperature power factor to 48.8 μW cm-1 K-2 and improve the Vickers hardness to 0.90 GPa. Consequently, a high ZT of 1.40 at 350 K and ZTave of 1.24 (300-500 K) are achieved in the Bi0.4Sb1.6Te3 + 0.03 wt% Ag9GaTe6 sample. Based on that, a competitive conversion efficiency of 6.5% at ΔT = 200 K is obtained in the constructed 17-couple TE module, which exhibits no significant change in the output property after 30 thermal cycle tests benefiting from the stable microstructure.