基因密码扩展历史与现代创新。

IF 51.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Chemical Reviews Pub Date : 2024-11-13 Epub Date: 2024-10-28 DOI:10.1021/acs.chemrev.4c00275
Alan Costello, Alexander A Peterson, Pei-Hsin Chen, Rustam Bagirzadeh, David L Lanster, Ahmed H Badran
{"title":"基因密码扩展历史与现代创新。","authors":"Alan Costello, Alexander A Peterson, Pei-Hsin Chen, Rustam Bagirzadeh, David L Lanster, Ahmed H Badran","doi":"10.1021/acs.chemrev.4c00275","DOIUrl":null,"url":null,"abstract":"<p><p>The genetic code is the foundation for all life. With few exceptions, the translation of nucleic acid messages into proteins follows conserved rules, which are defined by codons that specify each of the 20 proteinogenic amino acids. For decades, leading research groups have developed a catalogue of innovative approaches to extend nature's amino acid repertoire to include one or more noncanonical building blocks in a single protein. In this review, we summarize advances in the history of <i>in vitro</i> and <i>in vivo</i> genetic code expansion, and highlight recent innovations that increase the scope of biochemically accessible monomers and codons. We further summarize state-of-the-art knowledge in engineered cellular translation, as well as alterations to regulatory mechanisms that improve overall genetic code expansion. Finally, we distill existing limitations of these technologies into must-have improvements for the next generation of technologies, and speculate on future strategies that may be capable of overcoming current gaps in knowledge.</p>","PeriodicalId":32,"journal":{"name":"Chemical Reviews","volume":" ","pages":"11962-12005"},"PeriodicalIF":51.4000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Genetic Code Expansion History and Modern Innovations.\",\"authors\":\"Alan Costello, Alexander A Peterson, Pei-Hsin Chen, Rustam Bagirzadeh, David L Lanster, Ahmed H Badran\",\"doi\":\"10.1021/acs.chemrev.4c00275\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The genetic code is the foundation for all life. With few exceptions, the translation of nucleic acid messages into proteins follows conserved rules, which are defined by codons that specify each of the 20 proteinogenic amino acids. For decades, leading research groups have developed a catalogue of innovative approaches to extend nature's amino acid repertoire to include one or more noncanonical building blocks in a single protein. In this review, we summarize advances in the history of <i>in vitro</i> and <i>in vivo</i> genetic code expansion, and highlight recent innovations that increase the scope of biochemically accessible monomers and codons. We further summarize state-of-the-art knowledge in engineered cellular translation, as well as alterations to regulatory mechanisms that improve overall genetic code expansion. Finally, we distill existing limitations of these technologies into must-have improvements for the next generation of technologies, and speculate on future strategies that may be capable of overcoming current gaps in knowledge.</p>\",\"PeriodicalId\":32,\"journal\":{\"name\":\"Chemical Reviews\",\"volume\":\" \",\"pages\":\"11962-12005\"},\"PeriodicalIF\":51.4000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Reviews\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.chemrev.4c00275\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/28 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Reviews","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.chemrev.4c00275","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/28 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

遗传密码是所有生命的基础。除少数例外,核酸信息翻译成蛋白质的过程遵循保守规则,这些规则由密码子确定,密码子分别指定了 20 种可产生蛋白质的氨基酸。几十年来,领先的研究小组开发了一系列创新方法,以扩展自然界的氨基酸库,在单个蛋白质中包含一个或多个非密码构建模块。在这篇综述中,我们总结了体外和体内遗传密码扩增的历史进展,并重点介绍了最近的创新,这些创新扩大了生物化学上可获得的单体和密码子的范围。我们进一步总结了工程化细胞翻译的最新知识,以及可改善整体遗传密码扩增的调控机制的改变。最后,我们将这些技术的现有局限性提炼为下一代技术必须改进的地方,并推测未来的战略可能能够克服当前的知识差距。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Genetic Code Expansion History and Modern Innovations.

Genetic Code Expansion History and Modern Innovations.

The genetic code is the foundation for all life. With few exceptions, the translation of nucleic acid messages into proteins follows conserved rules, which are defined by codons that specify each of the 20 proteinogenic amino acids. For decades, leading research groups have developed a catalogue of innovative approaches to extend nature's amino acid repertoire to include one or more noncanonical building blocks in a single protein. In this review, we summarize advances in the history of in vitro and in vivo genetic code expansion, and highlight recent innovations that increase the scope of biochemically accessible monomers and codons. We further summarize state-of-the-art knowledge in engineered cellular translation, as well as alterations to regulatory mechanisms that improve overall genetic code expansion. Finally, we distill existing limitations of these technologies into must-have improvements for the next generation of technologies, and speculate on future strategies that may be capable of overcoming current gaps in knowledge.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemical Reviews
Chemical Reviews 化学-化学综合
CiteScore
106.00
自引率
1.10%
发文量
278
审稿时长
4.3 months
期刊介绍: Chemical Reviews is a highly regarded and highest-ranked journal covering the general topic of chemistry. Its mission is to provide comprehensive, authoritative, critical, and readable reviews of important recent research in organic, inorganic, physical, analytical, theoretical, and biological chemistry. Since 1985, Chemical Reviews has also published periodic thematic issues that focus on a single theme or direction of emerging research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信