Luca Panarella, Stanislav Tyaginov, Ben Kaczer, Quentin Smets, Devin Verreck, Alexander Makarov, Tom Schram, Dennis Lin, César Javier Lockhart de la Rosa, Gouri S Kar, Valeri Afanas'ev
{"title":"识别二维场效应晶体管可靠性问题缺陷的实验-建模框架","authors":"Luca Panarella, Stanislav Tyaginov, Ben Kaczer, Quentin Smets, Devin Verreck, Alexander Makarov, Tom Schram, Dennis Lin, César Javier Lockhart de la Rosa, Gouri S Kar, Valeri Afanas'ev","doi":"10.1021/acsami.4c10888","DOIUrl":null,"url":null,"abstract":"<p><p>In this work, a self-consistent method is used to identify and describe defects plaguing 300 mm integrated 2D field-effect transistors. This method requires measurements of the transfer characteristic hysteresis combined with physics-based modeling of charge carrier capture and emission processes using technology computer aided design (TCAD) tools. The interconnection of experiments and simulations allows one to thoroughly characterize charge trapping/detrapping by/from defects, depending on their energy position. Once the trap energy distribution is extracted, it is used as input in transient TCAD simulations to reproduce the experimental hysteretic transfer characteristics. Our method is widely applicable to any 2D channel/gate stack combination. Here, it is demonstrated on FAB-integrated devices with AlO<sub><i>x</i></sub>/HfO<sub>2</sub> gate oxide. A Gaussian-approximated defect band in the AlO<sub><i>x</i></sub> interlayer centered at a position of about 0.1 eV below the conduction band minimum of WS<sub>2</sub> is obtained. Based on this energy position, it is concluded that aluminum interstitial and oxygen vacancies are the defects giving rise to the observed hysteresis. These defects are detrimental to the stability of the studied devices as they are easily accessible by channel carriers during on-state operation. A prominent hysteresis obtained during measurements is consistent with this conclusion.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental-Modeling Framework for Identifying Defects Responsible for Reliability Issues in 2D FETs.\",\"authors\":\"Luca Panarella, Stanislav Tyaginov, Ben Kaczer, Quentin Smets, Devin Verreck, Alexander Makarov, Tom Schram, Dennis Lin, César Javier Lockhart de la Rosa, Gouri S Kar, Valeri Afanas'ev\",\"doi\":\"10.1021/acsami.4c10888\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this work, a self-consistent method is used to identify and describe defects plaguing 300 mm integrated 2D field-effect transistors. This method requires measurements of the transfer characteristic hysteresis combined with physics-based modeling of charge carrier capture and emission processes using technology computer aided design (TCAD) tools. The interconnection of experiments and simulations allows one to thoroughly characterize charge trapping/detrapping by/from defects, depending on their energy position. Once the trap energy distribution is extracted, it is used as input in transient TCAD simulations to reproduce the experimental hysteretic transfer characteristics. Our method is widely applicable to any 2D channel/gate stack combination. Here, it is demonstrated on FAB-integrated devices with AlO<sub><i>x</i></sub>/HfO<sub>2</sub> gate oxide. A Gaussian-approximated defect band in the AlO<sub><i>x</i></sub> interlayer centered at a position of about 0.1 eV below the conduction band minimum of WS<sub>2</sub> is obtained. Based on this energy position, it is concluded that aluminum interstitial and oxygen vacancies are the defects giving rise to the observed hysteresis. These defects are detrimental to the stability of the studied devices as they are easily accessible by channel carriers during on-state operation. A prominent hysteresis obtained during measurements is consistent with this conclusion.</p>\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsami.4c10888\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/28 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c10888","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/28 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Experimental-Modeling Framework for Identifying Defects Responsible for Reliability Issues in 2D FETs.
In this work, a self-consistent method is used to identify and describe defects plaguing 300 mm integrated 2D field-effect transistors. This method requires measurements of the transfer characteristic hysteresis combined with physics-based modeling of charge carrier capture and emission processes using technology computer aided design (TCAD) tools. The interconnection of experiments and simulations allows one to thoroughly characterize charge trapping/detrapping by/from defects, depending on their energy position. Once the trap energy distribution is extracted, it is used as input in transient TCAD simulations to reproduce the experimental hysteretic transfer characteristics. Our method is widely applicable to any 2D channel/gate stack combination. Here, it is demonstrated on FAB-integrated devices with AlOx/HfO2 gate oxide. A Gaussian-approximated defect band in the AlOx interlayer centered at a position of about 0.1 eV below the conduction band minimum of WS2 is obtained. Based on this energy position, it is concluded that aluminum interstitial and oxygen vacancies are the defects giving rise to the observed hysteresis. These defects are detrimental to the stability of the studied devices as they are easily accessible by channel carriers during on-state operation. A prominent hysteresis obtained during measurements is consistent with this conclusion.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.