Yongxing Chen, Peng Long, Bin Liu, Yi Wang, Junlong Wang, Tian Ma, Huilin Wei, Yue Kang and Haining Ji
{"title":"数据稀缺条件下材料科学中 \"快速学习 \"方法的开发与应用","authors":"Yongxing Chen, Peng Long, Bin Liu, Yi Wang, Junlong Wang, Tian Ma, Huilin Wei, Yue Kang and Haining Ji","doi":"10.1039/D4TA06452F","DOIUrl":null,"url":null,"abstract":"<p >Machine learning, as a significant branch of artificial intelligence, has provided effective guidance for material design by establishing virtual mappings between data and desired features, thereby reducing the cycle of material discovery and synthesis. However, the application of machine learning in materials science is hindered by data scarcity. Few-shot learning methods, an effective approach for improving the performance of machine learning models under data scarcity, have achieved significant development in the field of materials science. In this review, the recent advancements in few-shot learning methods in materials science are discussed, and the application workflow of machine learning algorithms is elucidated. Methods for dataset expansion are discussed from the perspective of data acquisition, including databases, natural language processing, and high-throughput experiments, while collating commonly used materials science databases in the process. The application of algorithms, such as transfer learning and data augmentation in materials science, was analyzed in few-shot environments in materials science. Finally, the challenges faced by the application of machine learning in materials science are summarized, and the related future prospects are outlined.</p>","PeriodicalId":82,"journal":{"name":"Journal of Materials Chemistry A","volume":" 44","pages":" 30249-30268"},"PeriodicalIF":10.7000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development and application of Few-shot learning methods in materials science under data scarcity\",\"authors\":\"Yongxing Chen, Peng Long, Bin Liu, Yi Wang, Junlong Wang, Tian Ma, Huilin Wei, Yue Kang and Haining Ji\",\"doi\":\"10.1039/D4TA06452F\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Machine learning, as a significant branch of artificial intelligence, has provided effective guidance for material design by establishing virtual mappings between data and desired features, thereby reducing the cycle of material discovery and synthesis. However, the application of machine learning in materials science is hindered by data scarcity. Few-shot learning methods, an effective approach for improving the performance of machine learning models under data scarcity, have achieved significant development in the field of materials science. In this review, the recent advancements in few-shot learning methods in materials science are discussed, and the application workflow of machine learning algorithms is elucidated. Methods for dataset expansion are discussed from the perspective of data acquisition, including databases, natural language processing, and high-throughput experiments, while collating commonly used materials science databases in the process. The application of algorithms, such as transfer learning and data augmentation in materials science, was analyzed in few-shot environments in materials science. Finally, the challenges faced by the application of machine learning in materials science are summarized, and the related future prospects are outlined.</p>\",\"PeriodicalId\":82,\"journal\":{\"name\":\"Journal of Materials Chemistry A\",\"volume\":\" 44\",\"pages\":\" 30249-30268\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2024-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Chemistry A\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/ta/d4ta06452f\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry A","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/ta/d4ta06452f","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Development and application of Few-shot learning methods in materials science under data scarcity
Machine learning, as a significant branch of artificial intelligence, has provided effective guidance for material design by establishing virtual mappings between data and desired features, thereby reducing the cycle of material discovery and synthesis. However, the application of machine learning in materials science is hindered by data scarcity. Few-shot learning methods, an effective approach for improving the performance of machine learning models under data scarcity, have achieved significant development in the field of materials science. In this review, the recent advancements in few-shot learning methods in materials science are discussed, and the application workflow of machine learning algorithms is elucidated. Methods for dataset expansion are discussed from the perspective of data acquisition, including databases, natural language processing, and high-throughput experiments, while collating commonly used materials science databases in the process. The application of algorithms, such as transfer learning and data augmentation in materials science, was analyzed in few-shot environments in materials science. Finally, the challenges faced by the application of machine learning in materials science are summarized, and the related future prospects are outlined.
期刊介绍:
The Journal of Materials Chemistry A, B & C covers a wide range of high-quality studies in the field of materials chemistry, with each section focusing on specific applications of the materials studied. Journal of Materials Chemistry A emphasizes applications in energy and sustainability, including topics such as artificial photosynthesis, batteries, and fuel cells. Journal of Materials Chemistry B focuses on applications in biology and medicine, while Journal of Materials Chemistry C covers applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry A include catalysis, green/sustainable materials, sensors, and water treatment, among others.