Tomasi Tusingwiire, Carolina Garcia-Baccino, Céline Carillier, Bruno Ligonesche, Catherine Larzul, Zulma G Vitezica
{"title":"利用三个品系猪的日采食量记录分析环境挑战敏感性的遗传决定因素","authors":"Tomasi Tusingwiire, Carolina Garcia-Baccino, Céline Carillier, Bruno Ligonesche, Catherine Larzul, Zulma G Vitezica","doi":"10.1093/jas/skae330","DOIUrl":null,"url":null,"abstract":"In pig breeding, environmental challenges can affect the welfare and productivity of animals. Resilient animals have the capacity to be minimally affected by these environmental challenges. Understanding the genetic basis of sensitivity to these environmental challenges is crucial for selecting more resilient animals, thereby enhancing welfare and productivity. The aims of this study were to: (1) estimate the probability of the occurrence of an unrecorded environmental challenge at a given day using daily feed intake (DFI) data, and (2) evaluate the genetic determinism of environmental sensitivity in three pig lines bred in real selection conditions. Data comprised of 100,799, 186,247, and 304,826 DFI records from 1,618, 2,517, and 3,788 Landrace (LA), Large White (LW) and Piétrain (PI) male pigs, respectively. The pedigree included 3,730, 5,649, and 9,293 animals for LA, LW, and PI, respectively. The probabilities of the occurrence of an unrecorded environmental challenge at a given day were estimated via a mixture model. The probabilities (p) of being “high CV days” were then taken as reference and used in genetic analysis as an environmental descriptor to describe the environment. DFI records were analysed using two linear models: a linear reaction norm animal model (RNAM) and the animal model. (Co)variance components were estimated using average-information restricted maximum likelihood (AI-REML). The means of the probabilities of the occurrence of an environmental challenge for LA, LW, and PI were 0.24, 0.10, and 0.22, respectively, indicating that the probability of an environmental challenge was low for most of the days. The genetic correlations between the intercept and the slope obtained from the RNAM for LA, LW, PI were -0.52, 0.06, and -0.36, respectively. These findings suggest that selecting hypothetically for decreased DFI in non-stressful conditions would result in pigs with increased DFI in stressful conditions in the LA and PI lines, whereas it would have a minor impact on the environmental sensitivity of LW. The proportion of resilient animals for LA, LW, and PI was 75.0, 74.2, and 72.2%, respectively, implying that most of the animals were resilient. The study demonstrated that the slope of DFI is heritable and can effectively be used as an indicator of sensitivity to environmental challenges. These results are valuable in improving the resilience of livestock species to environmental challenges through genetic selection.","PeriodicalId":14895,"journal":{"name":"Journal of animal science","volume":"25 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Genetic determinism of sensitivity to environmental challenges using daily feed intake records in three lines of pigs\",\"authors\":\"Tomasi Tusingwiire, Carolina Garcia-Baccino, Céline Carillier, Bruno Ligonesche, Catherine Larzul, Zulma G Vitezica\",\"doi\":\"10.1093/jas/skae330\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In pig breeding, environmental challenges can affect the welfare and productivity of animals. Resilient animals have the capacity to be minimally affected by these environmental challenges. Understanding the genetic basis of sensitivity to these environmental challenges is crucial for selecting more resilient animals, thereby enhancing welfare and productivity. The aims of this study were to: (1) estimate the probability of the occurrence of an unrecorded environmental challenge at a given day using daily feed intake (DFI) data, and (2) evaluate the genetic determinism of environmental sensitivity in three pig lines bred in real selection conditions. Data comprised of 100,799, 186,247, and 304,826 DFI records from 1,618, 2,517, and 3,788 Landrace (LA), Large White (LW) and Piétrain (PI) male pigs, respectively. The pedigree included 3,730, 5,649, and 9,293 animals for LA, LW, and PI, respectively. The probabilities of the occurrence of an unrecorded environmental challenge at a given day were estimated via a mixture model. The probabilities (p) of being “high CV days” were then taken as reference and used in genetic analysis as an environmental descriptor to describe the environment. DFI records were analysed using two linear models: a linear reaction norm animal model (RNAM) and the animal model. (Co)variance components were estimated using average-information restricted maximum likelihood (AI-REML). The means of the probabilities of the occurrence of an environmental challenge for LA, LW, and PI were 0.24, 0.10, and 0.22, respectively, indicating that the probability of an environmental challenge was low for most of the days. The genetic correlations between the intercept and the slope obtained from the RNAM for LA, LW, PI were -0.52, 0.06, and -0.36, respectively. These findings suggest that selecting hypothetically for decreased DFI in non-stressful conditions would result in pigs with increased DFI in stressful conditions in the LA and PI lines, whereas it would have a minor impact on the environmental sensitivity of LW. The proportion of resilient animals for LA, LW, and PI was 75.0, 74.2, and 72.2%, respectively, implying that most of the animals were resilient. The study demonstrated that the slope of DFI is heritable and can effectively be used as an indicator of sensitivity to environmental challenges. These results are valuable in improving the resilience of livestock species to environmental challenges through genetic selection.\",\"PeriodicalId\":14895,\"journal\":{\"name\":\"Journal of animal science\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of animal science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1093/jas/skae330\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, DAIRY & ANIMAL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of animal science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1093/jas/skae330","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
Genetic determinism of sensitivity to environmental challenges using daily feed intake records in three lines of pigs
In pig breeding, environmental challenges can affect the welfare and productivity of animals. Resilient animals have the capacity to be minimally affected by these environmental challenges. Understanding the genetic basis of sensitivity to these environmental challenges is crucial for selecting more resilient animals, thereby enhancing welfare and productivity. The aims of this study were to: (1) estimate the probability of the occurrence of an unrecorded environmental challenge at a given day using daily feed intake (DFI) data, and (2) evaluate the genetic determinism of environmental sensitivity in three pig lines bred in real selection conditions. Data comprised of 100,799, 186,247, and 304,826 DFI records from 1,618, 2,517, and 3,788 Landrace (LA), Large White (LW) and Piétrain (PI) male pigs, respectively. The pedigree included 3,730, 5,649, and 9,293 animals for LA, LW, and PI, respectively. The probabilities of the occurrence of an unrecorded environmental challenge at a given day were estimated via a mixture model. The probabilities (p) of being “high CV days” were then taken as reference and used in genetic analysis as an environmental descriptor to describe the environment. DFI records were analysed using two linear models: a linear reaction norm animal model (RNAM) and the animal model. (Co)variance components were estimated using average-information restricted maximum likelihood (AI-REML). The means of the probabilities of the occurrence of an environmental challenge for LA, LW, and PI were 0.24, 0.10, and 0.22, respectively, indicating that the probability of an environmental challenge was low for most of the days. The genetic correlations between the intercept and the slope obtained from the RNAM for LA, LW, PI were -0.52, 0.06, and -0.36, respectively. These findings suggest that selecting hypothetically for decreased DFI in non-stressful conditions would result in pigs with increased DFI in stressful conditions in the LA and PI lines, whereas it would have a minor impact on the environmental sensitivity of LW. The proportion of resilient animals for LA, LW, and PI was 75.0, 74.2, and 72.2%, respectively, implying that most of the animals were resilient. The study demonstrated that the slope of DFI is heritable and can effectively be used as an indicator of sensitivity to environmental challenges. These results are valuable in improving the resilience of livestock species to environmental challenges through genetic selection.
期刊介绍:
The Journal of Animal Science (JAS) is the premier journal for animal science and serves as the leading source of new knowledge and perspective in this area. JAS publishes more than 500 fully reviewed research articles, invited reviews, technical notes, and letters to the editor each year.
Articles published in JAS encompass a broad range of research topics in animal production and fundamental aspects of genetics, nutrition, physiology, and preparation and utilization of animal products. Articles typically report research with beef cattle, companion animals, goats, horses, pigs, and sheep; however, studies involving other farm animals, aquatic and wildlife species, and laboratory animal species that address fundamental questions related to livestock and companion animal biology will be considered for publication.