通过测量代码启发的观测值进行稳健的投影测量

IF 6.6 1区 物理与天体物理 Q1 PHYSICS, APPLIED
Yingkai Ouyang
{"title":"通过测量代码启发的观测值进行稳健的投影测量","authors":"Yingkai Ouyang","doi":"10.1038/s41534-024-00904-y","DOIUrl":null,"url":null,"abstract":"<p>Quantum measurements are ubiquitous in quantum information processing tasks, but errors can render their outputs unreliable. Here, we present a scheme that implements a robust projective measurement through measuring code-inspired observables. Namely, given a projective POVM, a classical code, and a constraint on the number of measurement outcomes each observable can have, we construct commuting observables whose measurement is equivalent to the projective measurement in the noiseless setting. Moreover, we can correct <i>t</i> errors on the classical outcomes of the observables’ measurement if the classical code corrects <i>t</i> errors. Since our scheme does not require the encoding of quantum data onto a quantum error correction code, it can help construct robust measurements for near-term quantum algorithms that do not use quantum error correction. Moreover, our scheme works for any projective POVM, and hence can allow robust syndrome extraction procedures in non-stabilizer quantum error correction codes.</p>","PeriodicalId":19212,"journal":{"name":"npj Quantum Information","volume":"41 1","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robust projective measurements through measuring code-inspired observables\",\"authors\":\"Yingkai Ouyang\",\"doi\":\"10.1038/s41534-024-00904-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Quantum measurements are ubiquitous in quantum information processing tasks, but errors can render their outputs unreliable. Here, we present a scheme that implements a robust projective measurement through measuring code-inspired observables. Namely, given a projective POVM, a classical code, and a constraint on the number of measurement outcomes each observable can have, we construct commuting observables whose measurement is equivalent to the projective measurement in the noiseless setting. Moreover, we can correct <i>t</i> errors on the classical outcomes of the observables’ measurement if the classical code corrects <i>t</i> errors. Since our scheme does not require the encoding of quantum data onto a quantum error correction code, it can help construct robust measurements for near-term quantum algorithms that do not use quantum error correction. Moreover, our scheme works for any projective POVM, and hence can allow robust syndrome extraction procedures in non-stabilizer quantum error correction codes.</p>\",\"PeriodicalId\":19212,\"journal\":{\"name\":\"npj Quantum Information\",\"volume\":\"41 1\",\"pages\":\"\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2024-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Quantum Information\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1038/s41534-024-00904-y\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Quantum Information","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41534-024-00904-y","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

量子测量在量子信息处理任务中无处不在,但错误会导致其输出不可靠。在这里,我们提出了一种通过测量代码启发的可观测变量来实现稳健投影测量的方案。也就是说,给定一个投影 POVM、一个经典代码以及对每个观测值测量结果数量的限制,我们就能构造出换算观测值,其测量结果等同于无噪声环境下的投影测量结果。此外,如果经典编码能纠正 t 个错误,我们就能纠正观测值测量经典结果上的 t 个错误。由于我们的方案不需要将量子数据编码到量子纠错码上,因此有助于为不使用量子纠错的近期量子算法构建稳健的测量。此外,我们的方案适用于任何投影 POVM,因此可以在非稳定器量子纠错码中实现稳健的综合征提取程序。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Robust projective measurements through measuring code-inspired observables

Robust projective measurements through measuring code-inspired observables

Quantum measurements are ubiquitous in quantum information processing tasks, but errors can render their outputs unreliable. Here, we present a scheme that implements a robust projective measurement through measuring code-inspired observables. Namely, given a projective POVM, a classical code, and a constraint on the number of measurement outcomes each observable can have, we construct commuting observables whose measurement is equivalent to the projective measurement in the noiseless setting. Moreover, we can correct t errors on the classical outcomes of the observables’ measurement if the classical code corrects t errors. Since our scheme does not require the encoding of quantum data onto a quantum error correction code, it can help construct robust measurements for near-term quantum algorithms that do not use quantum error correction. Moreover, our scheme works for any projective POVM, and hence can allow robust syndrome extraction procedures in non-stabilizer quantum error correction codes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
npj Quantum Information
npj Quantum Information Computer Science-Computer Science (miscellaneous)
CiteScore
13.70
自引率
3.90%
发文量
130
审稿时长
29 weeks
期刊介绍: The scope of npj Quantum Information spans across all relevant disciplines, fields, approaches and levels and so considers outstanding work ranging from fundamental research to applications and technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信