双功能氟碳电极添加剂降低了水性电解质的盐依赖性

IF 27.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Binghang Liu, Jintao Ma, Jingnan Feng, Ting Lin, Liumin Suo
{"title":"双功能氟碳电极添加剂降低了水性电解质的盐依赖性","authors":"Binghang Liu, Jintao Ma, Jingnan Feng, Ting Lin, Liumin Suo","doi":"10.1002/adma.202413573","DOIUrl":null,"url":null,"abstract":"The solid electrolyte interphase (SEI) plays a crucial role in extending the life of aqueous batteries. The traditional anion-derived SEI formation in aqueous electrolytes highly depends on high-concentrated organic fluorinating salts, resulting in low forming efficiency and long-term consumption. In response, this study proposes a bifunctional fluorocarbon electrode additive (BFEA) that enables electrochemical pre-reduction instead of TFSI anion to form the LiF-rich SEI and in situ produce conductive graphite inside the anode before the lithiation. The BFEA lowers the salt dependence of aqueous electrolytes, enabling the inorganic LiCl electrolyte to work first, but also successfully achieves a high SEI formation efficiency in the relatively low 10 m LiTFSI without mass transfer concerns, suppressing the parasitic hydrogen evolution from 11.24 to 4.35 nmol min<sup>−1</sup>. Besides, BFEA strengthens the intrinsic superiority of Li storage reaction by lowering battery polarization resulting from the in situ production of graphite, promoting charge transfer of electrode kinetics. Compared with the control group, the demonstrated Ah-level pouch cell employing BFEA exhibits better cycle stability above 300 cycles with higher capacity retention of 78.2% and the lower decay of the round-trip efficiency (△<sub>RTE</sub> = 2%), benefiting for maintaining the high efficiency and reducing heat accumulation in large-scale electric energy storage.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":null,"pages":null},"PeriodicalIF":27.4000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bifunctional Fluorocarbon Electrode Additive Lowers the Salt Dependence of Aqueous Electrolytes\",\"authors\":\"Binghang Liu, Jintao Ma, Jingnan Feng, Ting Lin, Liumin Suo\",\"doi\":\"10.1002/adma.202413573\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The solid electrolyte interphase (SEI) plays a crucial role in extending the life of aqueous batteries. The traditional anion-derived SEI formation in aqueous electrolytes highly depends on high-concentrated organic fluorinating salts, resulting in low forming efficiency and long-term consumption. In response, this study proposes a bifunctional fluorocarbon electrode additive (BFEA) that enables electrochemical pre-reduction instead of TFSI anion to form the LiF-rich SEI and in situ produce conductive graphite inside the anode before the lithiation. The BFEA lowers the salt dependence of aqueous electrolytes, enabling the inorganic LiCl electrolyte to work first, but also successfully achieves a high SEI formation efficiency in the relatively low 10 m LiTFSI without mass transfer concerns, suppressing the parasitic hydrogen evolution from 11.24 to 4.35 nmol min<sup>−1</sup>. Besides, BFEA strengthens the intrinsic superiority of Li storage reaction by lowering battery polarization resulting from the in situ production of graphite, promoting charge transfer of electrode kinetics. Compared with the control group, the demonstrated Ah-level pouch cell employing BFEA exhibits better cycle stability above 300 cycles with higher capacity retention of 78.2% and the lower decay of the round-trip efficiency (△<sub>RTE</sub> = 2%), benefiting for maintaining the high efficiency and reducing heat accumulation in large-scale electric energy storage.\",\"PeriodicalId\":114,\"journal\":{\"name\":\"Advanced Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":27.4000,\"publicationDate\":\"2024-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/adma.202413573\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202413573","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

固体电解质间相(SEI)在延长水电池寿命方面发挥着至关重要的作用。传统的水性电解质中阴离子衍生 SEI 的形成高度依赖于高浓度的有机氟化盐,导致形成效率低和长期消耗。为此,本研究提出了一种双功能碳氟化合物电极添加剂(BFEA),它可以代替 TFSI 阴离子进行电化学预还原,形成富含锂的 SEI,并在锂化之前在阳极内部原位生成导电石墨。BFEA 降低了水性电解质的盐依赖性,使无机氯化锂电解质首先发挥作用,而且还在相对较低的 10 m LiTFSI 中成功实现了较高的 SEI 形成效率,没有传质问题,将寄生氢演化从 11.24 nmol min-1 抑制到 4.35 nmol min-1。此外,BFEA 还能降低因原位生成石墨而导致的电池极化,促进电极动力学的电荷转移,从而增强锂存储反应的内在优越性。与对照组相比,采用 BFEA 的 Ah 级袋式电池在 300 次以上循环中表现出更好的循环稳定性,容量保持率高达 78.2%,往返效率衰减更低(△RTE = 2%),有利于在大规模电能存储中保持高效率并减少热量积累。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Bifunctional Fluorocarbon Electrode Additive Lowers the Salt Dependence of Aqueous Electrolytes

Bifunctional Fluorocarbon Electrode Additive Lowers the Salt Dependence of Aqueous Electrolytes
The solid electrolyte interphase (SEI) plays a crucial role in extending the life of aqueous batteries. The traditional anion-derived SEI formation in aqueous electrolytes highly depends on high-concentrated organic fluorinating salts, resulting in low forming efficiency and long-term consumption. In response, this study proposes a bifunctional fluorocarbon electrode additive (BFEA) that enables electrochemical pre-reduction instead of TFSI anion to form the LiF-rich SEI and in situ produce conductive graphite inside the anode before the lithiation. The BFEA lowers the salt dependence of aqueous electrolytes, enabling the inorganic LiCl electrolyte to work first, but also successfully achieves a high SEI formation efficiency in the relatively low 10 m LiTFSI without mass transfer concerns, suppressing the parasitic hydrogen evolution from 11.24 to 4.35 nmol min−1. Besides, BFEA strengthens the intrinsic superiority of Li storage reaction by lowering battery polarization resulting from the in situ production of graphite, promoting charge transfer of electrode kinetics. Compared with the control group, the demonstrated Ah-level pouch cell employing BFEA exhibits better cycle stability above 300 cycles with higher capacity retention of 78.2% and the lower decay of the round-trip efficiency (△RTE = 2%), benefiting for maintaining the high efficiency and reducing heat accumulation in large-scale electric energy storage.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信